Speed of body traveling in elliptical path

  • Thread starter Thread starter Varnson
  • Start date Start date
  • Tags Tags
    Body Path Speed
Varnson
Messages
23
Reaction score
0

Homework Statement


A body follows an elliptical path defined by r = sd/(1-s*cosP), where s and d are constant. If the angular speed is constant (dP/dT = w), show that the body's speed is v = rw[1+{(r*sinP)/d}^2]^(1/2)


Homework Equations


v = dr/dT*rhat + r*dP/dT*Phat; P = theta, I am not sure how to insert a theta symbol


The Attempt at a Solution


Right now I am thinking that I should find dr/dt. But as I see it since, there is no time dependence in the original equation, dr/dt = 0. Am I safe to take the derivative of r and use it as v? I am thinking no, since v is the magnitude of the velocity vector. Thanks for the help!
 
Physics news on Phys.org
Varnson said:

Homework Statement


A body follows an elliptical path defined by r = sd/(1-s*cosP), where s and d are constant. If the angular speed is constant (dP/dT = w), show that the body's speed is v = rw[1+{(r*sinP)/d}^2]^(1/2)

Homework Equations


v = dr/dT*rhat + r*dP/dT*Phat; P = theta, I am not sure how to insert a theta symbol

The Attempt at a Solution


Right now I am thinking that I should find dr/dt. But as I see it since, there is no time dependence in the original equation, dr/dt = 0. Am I safe to take the derivative of r and use it as v? I am thinking no, since v is the magnitude of the velocity vector. Thanks for the help!
You've got the parts of it right, but you're a little confused.

\vec{v} = \frac{d}{dt} (r \hat{r} ) = r \omega \hat{\theta} + \hat{r} \frac{dr}{dt}

From this, you can write down the magnitude of the velocity, | \vec{v} |

The only missing piece, is to evaluate dr/dt. This you can do from the elliptic equation, with the time dependence embedded in \theta(t).
 
Use the chain rule. d/dT=d/dP*dP/dT. P is a function of time and so is r through it's dependence on P.
 
I figured it out, I was stuck after I took the derivative, then i solved for r/d and the answer was right there in front of me! Thanks for the help!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top