Spinning disk, friction and pure roll

AI Thread Summary
The discussion revolves around a physics problem involving a uniform solid disk transitioning from rotation to pure rolling on a surface. Key points include determining the angular speed of the disk when pure rolling starts, calculating the fractional change in kinetic energy during this transition, and analyzing the time interval and distance traveled before pure rolling begins. Participants express confusion about the equations used, particularly regarding the velocity of the disk's center of mass and the signs in the torque equations. Clarifications are provided on the dynamics involved, emphasizing the importance of understanding the forces and torques acting on the disk during the transition. Overall, the conversation aims to deepen comprehension of rotational motion and frictional effects in this context.
CrunchBerries
Messages
58
Reaction score
8

Homework Statement


[/B]
A uniform solid disk of radius R is set into rotation with an angular speed ωi about an axis through its center. While still rotating at this speed, the disk is placed into contact with a horizontal surface and immediately released as shown in figure below (a) What is the angular speed of the disk once pure rolling takes place? (b) Find the fractional change in kinetic energy from the moment the disk is set down until pure rolling occurs. (c) Assume the coefficient of friction between disk and surface is μ. What is the time interval after setting the disk down before pure rolling motion begins? (d) How far does the disk travel before pure rolling begins?

Homework Equations



τ = r x ΣF = ΣIα
L = Iω
ΔKr = 1/2Iω^2
I = 1/2mR^2

The Attempt at a Solution



The full solution is in the manual;

[1] μmg = ma = m (v-0) / t

[2] μmgt = mv

[3] -μmgR = Iα = (1/2mR^2) (ω-ωi) / t

[4] -μmgRt = 1/2mR^2ω - 1/2mR^2ωi -> [5] Rωi - 2μgt = Rω

[6] Rωi - 2v = Rω -> Rωi - 2Rω = Rω -> ω = ωi / 3

My questions:

At first I tried an energy approach with Krot and Ufriction turning into Krot and Ktrans. My solution differed quite a bit from the textbook solution. However, I do have questions about the solution itself;

In [1], why is there (v - 0) ? v is never zero during that transition, only a = 0 when v reaches μs. Correct? I think they mean v = at -> a = v / t in general? Maybe zero is the speed of the surface?

In [3] the sign turns negative. I am guessing it is because they mean τ = R x -μmg opposes the rotation of the wheel? And the rotation of the wheel's effective torque Iα is acting the other way?

In [3] α is replaced with (ω - ωi) / t in the same manner as in [1], but this time there is a ωi unlike [1].

The rest of the entire problem is straightforward.I just really want to find a way to understand this problem properly. I have spent at least two hours running through concepts in my head, drawings and scribbles..

Thank you
 
Physics news on Phys.org
Hello.

CrunchBerries said:
In [1], why is there (v - 0) ? v is never zero during that transition, only a = 0 when v reaches μs. Correct?
v represents the velocity of the center of mass of the wheel. What is the value of v at the initial instant when the wheel is released?

In [3] the sign turns negative. I am guessing it is because they mean τ = R x -μmg opposes the rotation of the wheel? And the rotation of the wheel's effective torque Iα is acting the other way?
Yes. A free body diagram of the wheel should make this clear.

In [3] α is replaced with (ω - ωi) / t in the same manner as in [1], but this time there is a ωi unlike [1].
Hopefully, the comments regarding [1] will clear this up.
 
  • Like
Likes CrunchBerries
*SLAPS FOREHEAD*

I need more coffee.

Thank you for taking your time, I appreciate it! I feel better now hahaha..
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top