What suggested the question was the comment from thiemann's paper
"We stress, however, that the gauge symmetries of General Relativity have been
exactly taken care of in the reduced phase space approach. We are talking here about a symmetry group and not a gauge group. To break a local gauge group is usually physically inacceptable especially in renormalisable theories where the corresponding Ward identities find their way into the renormalisation theorems. However, it may or may not be acceptable that a physical symmetry is (spontaneouly, explicitly ...) broken. For instance, the explicit breaking of the axial vector current
Ward identity in QED, also called the ABJ anomaly, is experimentally verified."
I'm thinking there is a differenece between spontaneous and actual symmetry breaking: in spontaneous symetry breaking it is the vacuum state that breaks the symmetry whereas in actual breaking of symmetry one has an addition term to the action which breaks the symmetry - e.g an external magnetic field
ian