Solving Linear Combinations of Positive Stamp Values

AI Thread Summary
The discussion centers on the problem of expressing values as linear combinations of two positive stamp values, a and b, where a and b are greater than 1. It highlights that if a and b share a common factor greater than 1, there are infinitely many "bad" numbers that cannot be formed. However, if a and b are coprime, all integers beyond a certain point can be expressed, with examples provided using the values 5 and 8. The conversation also explores the proof that if a < b, one can eventually obtain 'a' consecutive numbers in the list of possible combinations, thus allowing for all subsequent numbers to be formed. The discussion concludes with a mathematical exploration of how to derive these combinations and the conditions necessary for their formation.
adamg
Messages
48
Reaction score
0
this is quite a classic problem i think but I am having difficulty finishing it off. If we have two stamps of positive values a and b, (greater than 1), what values can be expressed as a linear combination of these 2 stamps. If the stamps have a highest common factor greater than 1, then there are infinitely many 'bad' numbers. But if the numbers are coprime, after a certain point, all numbers are possible. For instance, with 5 and 8, in the list of possible numbers, you eventually get 28,29,30,31,32, therefore by adding 5's every other number is possible.
Can anyone help me prove the fact the if you have a and b, with a<b, then eventually you get 'a' consecutive numbers in the list of possibles. (therefore making all subsequent numbers possible).
Any other angle welcome!
 
Mathematics news on Phys.org
think the upper limit of not-possible numbers may be ab-a-b on the basis of a number of examples
 
I presume you mean for A and B to be non-negative. Since we have, in the example given, the case of 5(-3) + 8(2) =1, we see that every integer is possible.

In the example given: 5A+8B =30, and 5A+8B=32, the first case demands that 5 divide B and the second that 8 divides A. So those cases are only solved in non-negative terms with a zero for A or B. Assuming A less than B, to get A successive values, one of them will be divisible by A giving us a zero coefficient for B.

So I wonder if that was how you are seeing the problem?
 
Last edited:
yes, a and b must be non-negative, as must the numbers of each i.e. can't have negative numbers of stamps.
 
Well, here is a start: Let B = A+1. Look at series of A terms: (A+1) + A(A-1)=A^2+1; 2(A+1)+A(A-2)=A^2+2...A(A+1) + A(A-A) =A^2+A.

This series fulfillls the necessary requirements and starts at (A+1) +A(A-1) =A^2+1.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top