mateomy
- 305
- 0
Linear transformation T:\,\mathbb{R}^3\,\to\,\mathbb{R}^4
Find the standard matrix A for T
<br /> T\left(x_1,x_2,x_3\right)\,=\,\left(x_1 + x_2 + x_3, x_2 + x_3, 3x_1 + x_2, 2x_2 + x_3\right)<br />
<br /> \mathbf{v}\,=\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,\,\,\,T\left(\mathbf{v}\right)\,=\,T\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> x_1 + x_2 + x_3\\<br /> x_2 + x_3\\<br /> 3x_1 + x_2\\<br /> 2x_2 + x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> 1 & 1 & 1\\<br /> 0 & 1 & 1\\<br /> 3 & 1 & 0\\<br /> 0 & 2 & 1<br /> \end{bmatrix}<br />Is that correct? I feel like I'm just walking down a blind alley with this problem. The text is sort of convoluted in this section and I can't seem to find any supplementary material that I feel is helpful.
Thanks.
Find the standard matrix A for T
<br /> T\left(x_1,x_2,x_3\right)\,=\,\left(x_1 + x_2 + x_3, x_2 + x_3, 3x_1 + x_2, 2x_2 + x_3\right)<br />
<br /> \mathbf{v}\,=\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,\,\,\,T\left(\mathbf{v}\right)\,=\,T\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> x_1 + x_2 + x_3\\<br /> x_2 + x_3\\<br /> 3x_1 + x_2\\<br /> 2x_2 + x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> 1 & 1 & 1\\<br /> 0 & 1 & 1\\<br /> 3 & 1 & 0\\<br /> 0 & 2 & 1<br /> \end{bmatrix}<br />Is that correct? I feel like I'm just walking down a blind alley with this problem. The text is sort of convoluted in this section and I can't seem to find any supplementary material that I feel is helpful.
Thanks.