Standard Matrix A for Linear Transformation T: R^3 to R^4

mateomy
Messages
305
Reaction score
0
Linear transformation T:\,\mathbb{R}^3\,\to\,\mathbb{R}^4

Find the standard matrix A for T

<br /> T\left(x_1,x_2,x_3\right)\,=\,\left(x_1 + x_2 + x_3, x_2 + x_3, 3x_1 + x_2, 2x_2 + x_3\right)<br />

<br /> \mathbf{v}\,=\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,\,\,\,T\left(\mathbf{v}\right)\,=\,T\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> x_1 + x_2 + x_3\\<br /> x_2 + x_3\\<br /> 3x_1 + x_2\\<br /> 2x_2 + x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> 1 &amp; 1 &amp; 1\\<br /> 0 &amp; 1 &amp; 1\\<br /> 3 &amp; 1 &amp; 0\\<br /> 0 &amp; 2 &amp; 1<br /> \end{bmatrix}<br />Is that correct? I feel like I'm just walking down a blind alley with this problem. The text is sort of convoluted in this section and I can't seem to find any supplementary material that I feel is helpful.

Thanks.
 
Physics news on Phys.org
mateomy said:
Linear transformation T:\,\mathbb{R}^3\,\to\,\mathbb{R}^4

Find the standard matrix A for T

<br /> T\left(x_1,x_2,x_3\right)\,=\,\left(x_1 + x_2 + x_3, x_2 + x_3, 3x_1 + x_2, 2x_2 + x_3\right)<br />

<br /> \mathbf{v}\,=\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,\,\,\,T\left(\mathbf{v}\right)\,=\,T\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> x_1 + x_2 + x_3\\<br /> x_2 + x_3\\<br /> 3x_1 + x_2\\<br /> 2x_2 + x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> 1 &amp; 1 &amp; 1\\<br /> 0 &amp; 1 &amp; 1\\<br /> 3 &amp; 1 &amp; 0\\<br /> 0 &amp; 2 &amp; 1<br /> \end{bmatrix}<br />


Is that correct? I feel like I'm just walking down a blind alley with this problem. The text is sort of convoluted in this section and I can't seem to find any supplementary material that I feel is helpful.

Thanks.

Your last = sign has a 4 by 1 matrix equal to a 4 by 3 matrix. You left something out. There doesn't seem to be a question in your post but once you fix that last matrix equality your work looks correct.
 
That's what I'm really confused about. How do you show the transformation with the matrices?
 
You just need the matrix $$
X = \begin{bmatrix}
x_1\\ x_2\\ x_3
\end{bmatrix}$$

column matrix on the right of that last matrix. Then, calling your matrix ##A## you have ##T(X) = AX##
 
Okay, thank you.
 
mateomy said:
Linear transformation T:\,\mathbb{R}^3\,\to\,\mathbb{R}^4

Find the standard matrix A for T

<br /> T\left(x_1,x_2,x_3\right)\,=\,\left(x_1 + x_2 + x_3, x_2 + x_3, 3x_1 + x_2, 2x_2 + x_3\right)<br />

<br /> \mathbf{v}\,=\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,\,\,\,T\left(\mathbf{v}\right)\,=\,T\,\begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> x_1 + x_2 + x_3\\<br /> x_2 + x_3\\<br /> 3x_1 + x_2\\<br /> 2x_2 + x_3<br /> \end{bmatrix}\,=\,\begin{bmatrix}<br /> 1 &amp; 1 &amp; 1\\<br /> 0 &amp; 1 &amp; 1\\<br /> 3 &amp; 1 &amp; 0\\<br /> 0 &amp; 2 &amp; 1<br /> \end{bmatrix}<br />


Is that correct? I feel like I'm just walking down a blind alley with this problem. The text is sort of convoluted in this section and I can't seem to find any supplementary material that I feel is helpful.

Thanks.

It would have been correct if you had written
T(\mathbf{v}) = \begin{bmatrix}<br /> 1 &amp; 1 &amp; 1\\<br /> 0 &amp; 1 &amp; 1\\<br /> 3 &amp; 1 &amp; 0\\<br /> 0 &amp; 2 &amp; 1<br /> \end{bmatrix} \begin{bmatrix}<br /> x_1\\<br /> x_2\\<br /> x_3<br /> \end{bmatrix}<br />

RGV
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top