Is Urgent Online Help Available for Statics Problems?

  • Thread starter Thread starter jasperhoopman
  • Start date Start date
  • Tags Tags
    Statics
jasperhoopman
Messages
2
Reaction score
0
STATICS PROBLEM! Need urgent help!

Hi boys(and girls),

I got stuck at a few questions of statics, and since I have to send the correct answers TONIGHT... I tried them all, but some answers I just don't know...

Please help me with the following problems, which are displayed in the attachments.

Thanks! Appreciate your help!

Grts,
Jasper
 

Attachments

  • probleem1.jpg
    probleem1.jpg
    16.6 KB · Views: 320
  • probleem2.jpg
    probleem2.jpg
    16.7 KB · Views: 348
  • probleem3.jpg
    probleem3.jpg
    17 KB · Views: 347
Physics news on Phys.org


You need to post your attempt to achieve the correct answers, we can't just solve them for you. Do you show any work in the attachments?

Thanks
Matt
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top