JohanL
- 154
- 0
The time-independent Einstein-Vlasov system with the ansatz that every static spherically symmetric solution must have the form
<br /> f = \Phi(E,L)<br />
is as follows
<br /> <br /> e^{\mu - \lambda} \frac{v}{\sqrt{1 + \abs{v}^2}}\cdot {\partial_xf}-{\sqrt{1 + \abs{v}^2}}e^{\mu - \lambda}\mu_r\frac{x}{r}\cdot {\partial_rf}=0<br /> <br />
<br /> <br /> e^{-2 \lambda}(2r \lambda_r -1) + 1 = 8 \pi r^2G_\Phi(r,\mu) <br />
<br /> e^{-2 \lambda}(2r \mu_r +1) - 1 = 8 \pi r^2H_\Phi(r,\mu) <br /> <br />
where
<br /> <br /> G_\Phi(r,\mu) = \frac{2\pi}{r^2}\int_{1}^{\infty}\int_{0}^{r^2(\epsilon^2-1)} \Phi(e^{\mu(r)\epsilon,L}) \frac{\epsilon}{\sqrt{\epsilon^2-1-L/r^2}}dL<br /> d\epsilon<br />
<br /> H_\Phi(r,\mu) = \frac{2\pi}{r^2}\int_{1}^{\infty}\int_{0}^{r^2(\epsilon^2-1)} \Phi(e^{\mu(r)\epsilon,L}) \frac{\epsilon}{\sqrt{\epsilon^2-1-L/r^2}}dL<br /> d\epsilon<br /> <br />
I have some very simple questions about this system. I have no background in general relativity.
1. f is a distrubtion function and describes the distribution of the particles(galaxies or clusters of galaxies), right?
2. What is
<br /> \mu, \lambda <br /> <br />
and
<br /> \epsilon?<br /> <br />
Can you put any restrictions on these variables?
<br /> f = \Phi(E,L)<br />
is as follows
<br /> <br /> e^{\mu - \lambda} \frac{v}{\sqrt{1 + \abs{v}^2}}\cdot {\partial_xf}-{\sqrt{1 + \abs{v}^2}}e^{\mu - \lambda}\mu_r\frac{x}{r}\cdot {\partial_rf}=0<br /> <br />
<br /> <br /> e^{-2 \lambda}(2r \lambda_r -1) + 1 = 8 \pi r^2G_\Phi(r,\mu) <br />
<br /> e^{-2 \lambda}(2r \mu_r +1) - 1 = 8 \pi r^2H_\Phi(r,\mu) <br /> <br />
where
<br /> <br /> G_\Phi(r,\mu) = \frac{2\pi}{r^2}\int_{1}^{\infty}\int_{0}^{r^2(\epsilon^2-1)} \Phi(e^{\mu(r)\epsilon,L}) \frac{\epsilon}{\sqrt{\epsilon^2-1-L/r^2}}dL<br /> d\epsilon<br />
<br /> H_\Phi(r,\mu) = \frac{2\pi}{r^2}\int_{1}^{\infty}\int_{0}^{r^2(\epsilon^2-1)} \Phi(e^{\mu(r)\epsilon,L}) \frac{\epsilon}{\sqrt{\epsilon^2-1-L/r^2}}dL<br /> d\epsilon<br /> <br />
I have some very simple questions about this system. I have no background in general relativity.
1. f is a distrubtion function and describes the distribution of the particles(galaxies or clusters of galaxies), right?
2. What is
<br /> \mu, \lambda <br /> <br />
and
<br /> \epsilon?<br /> <br />
Can you put any restrictions on these variables?