sanctifier
- 58
- 0
Homework Statement
If the probability density function (p.d.f.) of the random variable X is
f(x| \theta ) =\begin{cases} \frac{1}{3\theta} & 0 < x \leq 3\theta<br /> \\0 & otherwise\end{cases}
Where \theta > 0 is an unknown parameter, and X_1, X_2 … X_n is a sample from X where n > 2
Question 1: What is the moment estimator (M.E.) of \theta?
Question 2: What is the maximum likelihood estimator (M.L.E) of \theta?
Question 3: Prove \widehat{\theta} = \frac{1}{3} max\{X_1,X_2...X_n\} is the consistent estimator of \theta.
Homework Equations
Nothing special.
The Attempt at a Solution
Answer 1:
Moment generating function (m.g.f.) of X is
\psi (t) = E(e^{tx}) = \int_0^{3 \theta } \frac{e^{tx}}{3\theta} dx= \frac{1}{3 \theta t} \int_0^{3 \theta }de^{tx}= \frac{1}{3 \theta t}e^{tx}|_{x=0}^{x=3 \theta}=\frac{1}{3 \theta t}(e^{3\theta t} - 1)
\begin{cases} \psi'(t) =e^{3 \theta t} \\<br /> \psi''(t) =3 \theta e^{3 \theta t} \end{cases}
\begin{cases} \psi'(0) =1 \\<br /> \psi''(0) =3 \theta \end{cases}
Hence, M.E. is
\widehat{\theta} = \frac{\psi''(0)}{3} = \frac{E(X^2)}{3}
Answer 2:
Let X be a vector whose components are X_1, X_2 … X_n, then the joint distribution of X_1, X_2 … X_n is
f(X| \theta ) = \frac{1}{(3\theta)^n} \;\;when\;\; 0<X_i \leq 3\theta \;\; for \;\; i=1,2,...,n
Because X_i \leq 3\theta, when \widehat{\theta} = \frac{1}{3} min\{X_1,X_2...X_n\}, f(X| \theta ) is maximized.
Hence, M.L.E of \theta is \frac{1}{3} min\{X_1,X_2...X_n\}.
Answer 3:
I have no idea to even start the proving.
Last edited: