indigojoker
- 240
- 0
Use Stirling's formula, n!=sqrt(2 pi n) n^n e^{-n}, to estimate the probability that all 50 states are represneted in a group of 50 councilmen chosen at random.
I think it should be:
P=\frac{50!}{50^{50}}
So using Stirling's formula, we get:
P=\frac{\sqrt{2 \pi 50} 50^{50} e^{-50}}{50^{50}}
P=\sqrt{2 \pi 50} e^{-50}
is this the correct approach?
I think it should be:
P=\frac{50!}{50^{50}}
So using Stirling's formula, we get:
P=\frac{\sqrt{2 \pi 50} 50^{50} e^{-50}}{50^{50}}
P=\sqrt{2 \pi 50} e^{-50}
is this the correct approach?