Strange proposition in calculus

  • Thread starter Thread starter Speedholic
  • Start date Start date
  • Tags Tags
    Calculus Strange
Speedholic
Messages
3
Reaction score
0

Homework Statement



f(x) is an injective function (1 to 1) and continuous in [a, b], and f(a) < f(b). Show that the
range of f is the interval [f(a), f(b)]

Homework Equations



Intermediate Value Theorem

The Attempt at a Solution


We are asked to use the intermediate value theorem to prove it. However, it seems to me that the proposition is false.

Suppose f(x) = x, a = 0, b = 1. f(x) is 1 to 1, continuous in [a,b] and f(a) < f(b), but its range is (-inf, inf), not [0, 1].

Am I reading this question wrong??
 
Physics news on Phys.org
I think the question is asking you to show that the range on [a,b] is [f(a),f(b)]
 
Ah... that makes sense...
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top