A Strategies for kinematics of a four-body decay?

  • A
  • Thread starter Thread starter Hepth
  • Start date Start date
  • Tags Tags
    Decay Kinematics
Click For Summary
Strategies for analyzing the kinematics of four-body decays include focusing on invariant masses of two or three particles, particularly when resonances are expected. The discussion highlights the importance of changing coordinates of invariants to manage integrable divergences encountered during calculations. There is a need for comprehensive guides similar to the PDG's Kinematics that address various scenarios, such as combinations of massive and massless particles. The conversation also touches on the utility of numerical methods versus analytic solutions, with an emphasis on the challenges posed by integration boundaries. Overall, the quest for improved methodologies in four-body decay analysis remains a key focus.
Hepth
Science Advisor
Gold Member
Messages
457
Reaction score
40
Does anyone have suggestions on the strategies for a four-body decay's kinematics? I'm just wondering what is out there. Last time I had to calculate something I just did it straightforward, but I know there must be other methods. (Like preferring to work in energies over invariants). I usually base it off of

preprint : http://ccdb5fs.kek.jp/cgi-bin/img/allpdf?198311072

But are there new strategies? Say for a four-lepton final state.

Thanks

edit: I should also add, that if you prefer analytic solutions there must be preferred methods. Numerically it probably doesn't matter due to the cuts being easy to implement.
 
Last edited by a moderator:
Physics news on Phys.org
Strategies for what?

Experimentally, I think most analyses look at the invariant masses of 2 or sometimes 3 particles, especially if you expect resonances. There are 5 degrees of freedom in the decay, at least if we can ignore or do not know the initial spin of the decaying particle.
 
So assume a decaying pseudoscalar to 4 leptons (or neutrinos), and you want to calculate the partial width. I have calculated this before, and basically you get integrable divergences when you try to integrate (due to the denominator's energies) that can be removed by changes of coordinates of the invariants. This is seen in the preprint I posted, but the same paper is here if you have access http://journals.aps.org/prd/abstract/10.1103/PhysRevD.29.2027

On page 29, the replacements (3.6) are needed to be able to easily do the integral, this is because the denominator is divergent at the integration boundaries.

I guess I'm asking if there are any guides like the PDG's Kinematics, on different situations (2 massive, 2 massless; 4 massive; 4 massless; 2 resonances decaying; 0 resonances) etc. Each case has a scheme of invariants that are beneficial for the analytic integration, and problems that occur, mainly due to the boundaries.

When doing loop integrals there are a lot of guides for controlling your infrared and collinear divergences by looking at the matrices of coefficients of the feynman parameters, and doing certain situations differently. I was looking for something similar for kinematics.

Thank you.
 
No idea about the theoretical side, sorry.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...
Hello everyone, I am trying to calculate the energy loss and straggling of alpha particles with same energy, I used LISE++ to obtain the energy loss in every layer of the materials using Spectrometer Design of LISE++, but I can only calculate the energy-loss straggling layer by layer. Does anyone know the way to obtain the energy-loss straggling caused by every layer? Any help would be appreciated. J.