dejo-ro
- 4
- 0
Hey Everyone,
I've a quick a question regarding the make-up of bosonic Green's functions, taking the free propagator for phonons as example. According to Mahan, 3rd ed. it is given by:
D(q, \lambda, t-t')=-i\langle0|TA_{q}(t)A_{-q}(t')|0\rangle
with A_{q}=a_{q}+a^{+}_{q}
[ Eqs. 2.66 & 2.67]
The operators showing up in the propagator ( i.e. A ) are not the simple creation & annihilation operators ( i.e. a, as would be the case for fermions ) but linear combinations thereof. What's the reason for this? Does this imply that phonons are only produced in pairs? Is this the same for other bosonic propagators ( I'm only familiar with phonons ). Hints, Corrections & Solutions greatly appreciated!
I've a quick a question regarding the make-up of bosonic Green's functions, taking the free propagator for phonons as example. According to Mahan, 3rd ed. it is given by:
D(q, \lambda, t-t')=-i\langle0|TA_{q}(t)A_{-q}(t')|0\rangle
with A_{q}=a_{q}+a^{+}_{q}
[ Eqs. 2.66 & 2.67]
The operators showing up in the propagator ( i.e. A ) are not the simple creation & annihilation operators ( i.e. a, as would be the case for fermions ) but linear combinations thereof. What's the reason for this? Does this imply that phonons are only produced in pairs? Is this the same for other bosonic propagators ( I'm only familiar with phonons ). Hints, Corrections & Solutions greatly appreciated!