Structure theorem for abelian groups

Jim Kata
Messages
197
Reaction score
10
So say you have a presentation matrix A for a module, and you diagonalise it and you get something like diag[1,5] well you can interpret that as A can be broken down as the direct sum of 1+Z/5Z. That is the trivial group of just the identity plus cyclic 5. What if your module is defined over the ring of polynomials, and after you diagonalise your presentation matrix you get something like
diag[1,(t-1)^2(t-2)]? How do I interpret this? What is the cyclic group something like
(t-1)^2(t-2) would represent?
 
Physics news on Phys.org
I assume you are working with k[X]. Your presentation matrix of M is

A=\left(\begin{array}{cc} 1 & 0\\ 0 & (X-1)^2(X-2)\\ \end{array}\right)

Let the map corresponding to this matrix by \alpha:k[X]^2\rightarrow k[X]^2. Then we know that

M\cong k[X]^2/\alpha k[X]^2

Now, let {e,e'} be a basis corresponding to A, then we know that \alpha k[X] is generated by \{e,(X-1)^2(X-2)e'\}

Thus

M\cong k[X]^2/\alpha k[X]^2=k[X]\times (k[X]/(X-1)^2(X-2))
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top