Struggling with an Ugly Differential Equation? Try This Technique!

kuahji
Messages
390
Reaction score
2
y''(x)-(x+ln x)y(x)=0

I've been looking at this one for awhile, any ideas what technique I can use to solve it?
 
Physics news on Phys.org
Numerical solution?
 
I think there is a theorem about Linear ODEs of 2nd order that if y1 and y2 are two particular solutions then the general solution is y=c1y1+c2y2. Arent there any hints for what the particular solutions might be?
 
Well, I do have this hint,

(x+ln x)^1/2=x^1/2(1+1/2*x^-1*ln x)+O(x^-3/2 * (ln x)^2)

And sadly I'm a bit rusty.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top