Stuck in an Infinite Square Well

cepheid
Staff Emeritus
Science Advisor
Gold Member
Messages
5,197
Reaction score
38

Homework Statement



You don't need it verbatim. I'm just trying to solve for the eigenstates and eigenvalues of the Hamiltonian for a one-dimensional infinite square well, with a particle of mass M inside. I'm embarrassed to say it, but the question is throwing me off because the infinite well is centred at zero, ranging from -b < x < b rather than from 0 < x < a.

Homework Equations



\mathcal{H}\psi(x) = E\psi(x)

\mathcal{H} \equiv -\frac{\hbar^2}{2M}\frac{d^2 }{dx^2}\left(\right) + V()

V = 0 \ \ \mbox{inside the well.}

The Attempt at a Solution



Immediately from the ODE the solution is obviously:

\psi(x) = A \sin \left(\frac{\sqrt{2ME}}{\hbar}x\right) + B \cos \left(\frac{\sqrt{2ME}}{\hbar}x\right)

\psi(b) = \psi(-b) = 0

\Rightarrow A \sin \left(\frac{\sqrt{2ME}}{\hbar}b\right) + B \cos \left(\frac{\sqrt{2ME}}{\hbar}b\right) =0

\Rightarrow -A \sin \left(\frac{\sqrt{2ME}}{\hbar}b\right) + B \cos \left(\frac{\sqrt{2ME}}{\hbar}b\right) =0

I'm really not sure how to proceed. There is no value of b for which both the sine and cosine will be zero, suggesting that for some eigenstates, A is zero, and for others, B is zero. Griffiths even hints that even states are given by only cosines and odd states by sines, but I can't figure out how to arrive at this result systematically.
 
Last edited:
Physics news on Phys.org
I recommend you use a variable z=x+b. Then the well will be between
z=0 and z=2b, with the efunction sin(n\pi z/2b).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top