Stuck trying to integrate dy/dx-y=cos(x)-2

  • Thread starter Thread starter dooogle
  • Start date Start date
  • Tags Tags
    Integrate Stuck
dooogle
Messages
20
Reaction score
0

Homework Statement



integrate

dy/dx-y=cos(x)-2

Homework Equations


The Attempt at a Solution



dy/dx-y=cos(x)-2

is in the form

dy/dx+p(x)=q(x)

take the I.F as e^int(p(x))dx=e^-x

multiplying throughout by e^-x

d(e^-x)z/dx=-(cos(x)e^-x)-(2e^-x)

(e^-x)z=-int((cos(x)e^-x)-(2e^-x))dx

so -int((cos(x)e^-x)-(2e^-x))dx=-int(cos(x)(e^-x)dx-2int(e^-x)dx

2int(e^-x)dx=-2(e^-x)+c

-int(cos(x)(e^-x)) this is where i have trouble I am not sure if my method is correct using integration by parts multiple times

1st integration
let u=e^(-x) du/dx=-e^(-x) dv/dx=cos(x) v=-sin(x)

-int(cos(x)(e^-x))dx = -e^(-x)sin(x)+int(-sin(x)e^(-x))dx

2nd integration
int(-sin(x)e^(-x))dx
let u=e^(-x) du/dx=-e^(-x) dv/dx=-sin(x) v=cos(x)

e^(-x)cos(x)+int(cos(x)(e^-x))dx

so

-int(cos(x)(e^-x)dx=-e^(-x)sin(x)+e^(-x)cos(x)+int(cos(x)(e^-x))dx

this is where I am not sure i take away from both sides int(cos(x)(e^-x))dx giving

-2int(cos(x)(e^-x)dx=-e^(-x)sin(x)+e^(-x)cos(x)

int(cos(x)(e^-x)dx=e^(-x)/2(sin(x)+cos(x))

so
(e^-x)z=-2(e^-x)+c+e^(-x)/2(sin(x)+cos(x))+c

z=-2+(sin(x)+cos(x))/2+c/(e^-x)

1/y=-2+(sin(x)+cos(x))/2+c/(e^-x)

y=1/(-2+(sin(x)+cos(x))/2+c/(e^-x))

thank you for your time to recap my problems is:

im not sure if i am allowed to add integrals

cheers

dooogle
 
Physics news on Phys.org
It's easier to do that integral by using the Euler formula

e^{\pm ix} = \cos x \pm i \sin x

to obtain an expression for \cos x in terms of exponentials. However, your integration is correct if you mean

int(cos(x)(e^-x)dx= (e^(-x)/2 ) (sin(x)+cos(x)) +c
 
Sorry but the use of two "/"s in
y=1/(-2+(sin(x)+cos(x))/2
is meaning less to me.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top