sutupidmath said:
My results:\int ln^2\left(\frac{x^2}{x^2+3x+2}\right) dx=2\int ln^2(x)dx-4\int ln(x)ln(x+1)dx-4\int ln(x)ln(x+2)dx
+\int ln^2(x+1)dx+2\int ln(x+1)ln(x+2)dx+\int ln^2(x+2)dx
The coefficient of your first term on RHS should be 4 not 2.
From here i have evaluated each integral, and they are as follows:
\int ln^2(x)dx=x^2ln^2(x)-2xln(x)-2x+C (since we will be taking into account the limit, i guess i can leave out the constant C)
You have a sign error; it should be +2x not -2x.
\int ln(x)ln(x+1)dx=ln(x)[(x+1)ln(x+1)-x]+2x-(x+1)ln(x+1)-\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}x^n
Instead of using the series (which doesn't converge over the interval we are interested in, it is better to use the definition of PolyLogarithm Mute gave to show that
\int \frac{\ln(x+1)}{x}dx=-\operatorname{Li}_2(-x)
And hence:
\int \ln(x)\ln(x+1)dx=\ln(x)[(x+1)\ln(x+1)-x]+2x-(x+1)\ln(x+1)+\operatorname{Li}_2(-x)
\int ln(x)ln(x+2)dx=ln(x)[(x+2)ln(x+2)-x]-(x+2)ln(x+2)+2x-2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}x^n
Again; avoid the divergent series by showing that
\int \frac{\ln(x+2)}{x}dx=\ln(2)\ln(x)-\operatorname{Li}_2(\frac{-x}{2})
And Hence:
\int \ln(x)\ln(x+2)dx=\ln(x)[(x+2)\ln(x+2)-x]-(x+2)\ln(x+2)+2x-\ln(2)\ln(x)+\operatorname{Li}_2\left( \frac{-x}{2}\right)
\int ln^2(x+1)dx=xln^2(x+1)-2xln(x+1)+ln^2(x+1)-2ln(x+1)+2x
Good.
\int ln(x+1)ln(x+2)dx=ln(x+1)[(x+2)ln(x+2)-x]-(x+2)ln(x+2)+2x-\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}(x+1)^n-ln(x+1)
Again, avoid the series by showing
\int \frac{\ln(x+2)}{x+1}dx=-\operatorname{Li}_2(-(x+1))
And Hence:
\int \ln(x+1)\ln(x+2)dx=\ln(x+1)[(x+2)\ln(x+2)-(x+1)]-(x+2)\ln(x+2)+2x+\operatorname{Li}_2(-(x+1))
\int ln^2(x+2)dx=xln^2(x+2)-2xln(x+2)+ln^2(x+2)-2ln(x+2)+2x
This is what i have got for the indefinite integrals.
There is a small error, you should get:
\int \ln^2(x+2)dx=(x+2)\ln^2(x+2)-2(x+2)\ln(x+2)+2x
Fix those errors and then add up your terms and cancel as much as possible to show that
\int \ln^2\left(\frac{x^2}{x^2+3x+2}\right) dx=8\ln(2)\ln(x) + 4 x\ln^2(x)- 4 (x+1)\ln(x)\ln(x+1) + (x+1)\ln^2(x+1) - 4 (x+2)\ln(x)\ln(x+2)
+2 (x+2)\ln(x+1)\ln(x+2)+ (x+2)\ln^2(x+2) + 2\operatorname{Li}_2(-(x+1))-4\operatorname{Li}_2(-x)-8\operatorname{Li}_2\left(-\frac {x} {2} \right)
After you do that, I'll help you through incorporating the limits.