The equation 8n^2 = 64n lg(n) is identified as a transcendental equation, making it challenging to isolate n algebraically. Graphical methods or numerical approaches, such as trial and error, are suggested for finding solutions, with one known solution around n ~ 6.5. The discussion also raises the question of whether the inequality 8n^2 < 64n lg(n) holds for certain values of n, particularly in the context of algorithm running times. While n is specified as an integer, the interest extends to both real and integer solutions. The need for an analytical approach is emphasized due to exam constraints prohibiting calculator use.