Addition of Subscript F_4k+4: Explained with Examples

  • Thread starter Thread starter Robb
  • Start date Start date
  • Tags Tags
    Addition
Robb
Messages
225
Reaction score
8
Homework Statement
Let ##F_n be the n-th Fibonacci number, where F_0=0 and F_1=1. Prove that if n is a multiple of 4, the F_n is a multiple of 3.
Relevant Equations
##F_{4k+4}
Can somebody please explain below

##F_{4k+4} = F_{4k+3} + F_{4k+2}##

I thought it would be

##F_{4k+4} = F_{4k+3} +F_{4k+1}##

Thanks!
 
Physics news on Phys.org
AHHHH! Gracias!
 
de nada
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top