I Can subspaces be used to determine probabilities in quantum mechanics?

  • I
  • Thread starter Thread starter friend
  • Start date Start date
  • Tags Tags
    Qm Subspaces
friend
Messages
1,448
Reaction score
9
Suppose we have an observable with a certain number of eigenstates. We would normalize all these possibilities to 1 in order to give each eigenstate an appropriate probability of being measured. Can we then only consider the data of many measurements for only a subset of those eigenstates and normalize that subset to 1 and get different probabilities for considering only that subset of alternatives? Is that subset called a subspace of the original Hilbert space? And can this be done for any arbitrary subset of the original eigenstates?
 
Last edited:
Physics news on Phys.org
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top