MHB Are At Least Two Numbers Equal in This Sum of 100 Terms?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sum Terms
AI Thread Summary
The discussion centers on proving that in a set of 100 terms selected from the numbers 1 to 100, where the sum of their square roots equals 12.5, at least two numbers must be equal. Participants explore the implications of the equation S = 12.5 and seek examples that satisfy this condition. The challenge lies in demonstrating that the unique values of the selected numbers cannot achieve the required sum without repetition. Various mathematical approaches and potential examples are suggested to illustrate the point. Ultimately, the conclusion emphasizes the necessity of having at least two equal numbers in the set to meet the specified sum.
Albert1
Messages
1,221
Reaction score
0
$a_1,a_2,...,a_{100}\in \begin{Bmatrix}
1,2,3,-----,100
\end{Bmatrix}$

$S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}}=12.5$.

Prove that at least two of the numbers are equal
 
Last edited:
Mathematics news on Phys.org
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
 
Last edited by a moderator:
Saknussemm said:
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
Can you give some examples to make S=12.5 ?
Or if you can prove it the best
 
Albert said:
Can you give some examples to make S=12.5 ?
Or if you can prove it the best

I meant my remark that each and every one $a_i$ expression in $\sum_{i=0}^{100} \frac{1}{\sqrt{a_i}}$ has to be a perfect square as a proof. Because, if a single $a_i$ equals a number like 2, the term $\frac{1}{\sqrt{a_i}}$ is irrational, which means that the sum S in turn will be irrational, and so will never equal a number like $\frac{25}{2}$. This means you will have to build your sum exclusively from terms like 1/10, 1/9, 1/8, etc.

The proof that there is no pair of integers $(a, b)$ such that $\sqrt{2} = \frac{a}{b}$ is due to Euclid. It consists in positing, without loss of generality, that $\frac{a}{b}$ is an irreducible fraction. Rearranging the terms and squaring, you find that both of $a^2$ and $b^2$ are even, meaning that both $a$ and $b$ are even, which contradicts the hypothesis that we have an irreducible fraction. It doesn't seem difficult to extend the proof to the root of any number that is not a perfect square, or to use a similar proof for the sum of 2 irrational numbers.

Now, if instead of requiring a rational result you had required an interval of real numbers, this proof would not be valid.
Then we could use the same kind of device you used to resolve a similar task, namely bound the sum $\sum_{n=1}^{100} \frac{1}{\sqrt{n}}$ by an integral.
Because $y = \frac{1}{\sqrt{x}}$ is monotonically decreasing and positive, we have

$\displaystyle \sum_{n=1}^{100} \frac{1}{\sqrt{n}} \; > \; \int_1^{101} \frac{1}{\sqrt{x}} \,dx \; > \; \int_1^{100} \frac{1}{\sqrt{x}} \,dx \; = \left. 2 \sqrt{x} \; \right\rvert_{1}^{100} \; = \; 18$

To get below 18, you will have to repeat some of the lower numbers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
6
Views
2K
Replies
15
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
14
Views
2K
Back
Top