Sum of a Series: Finding the Convergence and Limit of a Series

  • Thread starter Thread starter zeion
  • Start date Start date
  • Tags Tags
    Series Sum
zeion
Messages
455
Reaction score
1

Homework Statement



Find the sum of the series.

\sum_{k=0}^\infty \frac{1}{(k+1)(k+3)}


Homework Equations





The Attempt at a Solution


<br /> = \frac{1}{1\cdot3} + \frac{1}{2\cdot4} + \frac{1}{3\cdot5} + ... + \frac{1}{(n+1)\cdot(n+3)}<br />

<br /> = \frac{1}{2} [(1-\frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + ... + (\frac{1}{(n+1)} - \frac{1}{(n+3)})<br />

<br /> = \frac{1}{2}[ 1 + (\frac{1}{2} + \frac{1}{3} + \frac{1}{n+1}) - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{n+3}) ]<br />

So here
<br /> (\frac{1}{2} + \frac{1}{3} + \frac{1}{n+1}) \to 1<br />

<br /> (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{n+3}) \to 0<br />

Then the whole thing sums to 1?
 
Physics news on Phys.org
Ok, things went very bad from the second to the third line in your argument; why don't you try to cancel the terms with opposite signs, instead of grouping them?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top