zeion
- 455
- 1
Homework Statement
Find the sum of the series.
\sum_{k=0}^\infty \frac{1}{(k+1)(k+3)}
Homework Equations
The Attempt at a Solution
<br /> = \frac{1}{1\cdot3} + \frac{1}{2\cdot4} + \frac{1}{3\cdot5} + ... + \frac{1}{(n+1)\cdot(n+3)}<br />
<br /> = \frac{1}{2} [(1-\frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + ... + (\frac{1}{(n+1)} - \frac{1}{(n+3)})<br />
<br /> = \frac{1}{2}[ 1 + (\frac{1}{2} + \frac{1}{3} + \frac{1}{n+1}) - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{n+3}) ]<br />
So here
<br /> (\frac{1}{2} + \frac{1}{3} + \frac{1}{n+1}) \to 1<br />
<br /> (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{n+3}) \to 0<br />
Then the whole thing sums to 1?