Sum of Distinct Primes: Fact or Fiction?

  • Thread starter Thread starter chhitiz
  • Start date Start date
  • Tags Tags
    Primes Sum
chhitiz
Messages
221
Reaction score
0
i observed that every composite no. with exception of 4 and 6 can be expressed as sum of distinct prime no.s. eg: 200=103+97 100=53+47 25=13+7+5
is this true? is there any theorem stating as such?
 
Physics news on Phys.org
Interesting question!

It seems true. Maybe you could prove it using induction?

The base cases could be integers from 1 to 20, say, by just showing the sums.

Then you could assume that it works for all composite numbers up to a composite number k.

Then does it work for the next composite number? Well, look at the largest prime number less than it. If composite - prime is not 1 or 4 or 6, then the sum can certainly be expressed as prime + (sum for the difference composite - prime, which can definitely be done... if the difference is prime, just take the prime, otherwise, the inductive hypothesis covers it). If the difference is 1 or 4 or 6, try the next prime number below the one you just tried. If this isn't 4 or 6, do the same thing. If it is, try the next lower prime number. And etc.

21 = composite, 19 = prime, diff = 2, done with sum = 19 + 2.

22 = composite, 19 = prime, diff = 3, done with sum = 19 + 3.

24 = composite, 23 = prime, diff = 1. Try 19 = prime, then diff = 5 and done with 19 + 5.

25 = composite, 23 = prime, diff = 2, done with 23 + 2.

26 = composite, 23 = prime, diff = 3, done with 23 + 3.

27 = composite, 23 = prime, diff = 4, try 19 = prime, diff = 9, done with 19 + psum(9) = 19 + 7 + 2.

etc.

This is just a sketch, but I think it should work. Does anybody have any comments?
 
You can prove this with Bertrand's postulate.
 
Yes, indeed.
It also follows from Bertrand's postulate that the number of such distinct primes does not exceed log2(N), where N is the original number to be decomposed.
Am I correct?
 
This is almost identical to 'Goldbach's conjecture' which is more than two and a half centuries old, famous, and has never been proved, so you are unlikely to.
 
This one is 'easier' in the sense that there is no limit on the number of primes that make the sum, just that they are distinct, whilw Goldback's conjecture restricts to two primes. It seems to me that Bertrand's postulate is sufficient for the proof.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top