Sum of Fractions: Solving \sum_{k=1}^{100} (\frac{1}{k} - \frac{1}{k+1})

  • Thread starter Thread starter IniquiTrance
  • Start date Start date
  • Tags Tags
    Sum
IniquiTrance
Messages
185
Reaction score
0

Homework Statement


\sum_{k=1}^{100} (\frac{1}{k} - \frac{1}{k+1})

Homework Equations


The Attempt at a Solution



Unsure how to approach this...
 
Physics news on Phys.org


consider the same series

\sum_{k=1}^{n} (\frac{1}{k} - \frac{1}{k+1})


Now write out a few terms (k=1,k=2,k=3,k=n-2,k=n-1,k=n) and see what happens.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top