- #1

- 801

- 463

He reminds us that for complex scalars, ##c^2+d^2=(c-id)(c+id)## and then proceeds to do the same with operators,

factorizing ##\frac{\hat{X}^2}{X_0^2}+\frac{\hat{P}^2}{P_0^2}##

in this way :

##=(\frac{\hat{X}}{X_0}-i\frac{\hat{P}}{P_0})(\frac{\hat{X}}{X_0}+i\frac{\hat{P}}{P_0})##

which he re-expands into a sum of squares plus a NON-ZERO commutator.

Is it not true that the identity he started with, i.e. ##c^2+d^2=(c-id)(c+id)## for complex scalars - is valid precisely when (and because) ##icd=idc##? So how does this apply to the operators where ##XP\ne{PX}## ?