MHB Sum or difference formula (sin, cos, and tan)

AI Thread Summary
To find the sine, cosine, and tangent of the angle ${-13\pi}/{12}$, the first step is to add $2\pi$, resulting in $\frac{11}{12}\pi$. This angle can be expressed as a sum of known angles, such as $\frac{3\pi}{4} + \frac{\pi}{6}$ or $\frac{1}{2}\pi + \frac{1}{4}\pi + \frac{1}{6}\pi. By using the angle-sum formulas, the exact values for sine, cosine, and tangent can be calculated. The discussion emphasizes the importance of expressing angles in a manageable form before applying trigonometric identities. Understanding these formulas simplifies the process of finding trigonometric values for complex angles.
Taryn1
Messages
25
Reaction score
0
So I'm supposed to find the exact values of the sine, cosine, and tangent of an angle by using a sum or difference formula ( i.e. sin(x+y)=sin(x)cos(y)+cos(x)sin(y) ), but this is the angle I was given: ${-13\pi}/{12}$. How do I use a sum or difference formula to get the sin, cos, and tan of that?
 
Last edited:
Mathematics news on Phys.org
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)
 
MarkFL said:
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)

Or even just $\displaystyle \begin{align*} \frac{3\pi}{4} + \frac{\pi}{6} \end{align*}$ or $\displaystyle \begin{align*} \frac{\pi}{4} + \frac{2\pi}{3} \end{align*}$ to avoid multiple uses of the compound angle formulae...
 
Thanks for your help! That makes more sense now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top