Summation Equation, Trying to solve this recurrence forumla.

bobbybob
Messages
2
Reaction score
0
Hello. I've searched around a bit for a math forum where I could get help with this and this seems like the one I found where I could get some help with this. I was posed the following problem. Now I must admit it is over my head (as is most of the math on this forum) I was hoping that someone here could help give me an answer for this person. Or if not an answer, a reason why his probem makes no sense.

I want to predict the number of cups to be hit in beer pong each round, based upon shot percentage.

It's not just number of shots * percentage, because if you make 2 shots in a row, you get an extra turn. Even your extra turns can get extra turns..

Therefore, Number of cups per round is the recursive formula

C(t) = C(a^2 * t) + 2at where 0 < a < 1 for accuracy

So if you want to find the number of cups in 1 round, calculate c(1)
This can actually be reduced to the summation equation

for i = 0 to infinity -> 2a^(2i+1)

How do I solve this summation and get a formula?
I'd really appreciate it,

Thanks.
 
Mathematics news on Phys.org
You either miss your first shot, OR make your first and miss the next, OR make your first two and miss the next OR ... OR make the first n and miss the next OR ...

The probability that you make the first n and miss the next is an(1-a).

So what you want is the sum of (getting n cups) x (probability of getting n cups) for all n, i.e.:

\sum _{n=0}^{\infty}na^n(1-a) = (1-a)\sum _{n=0}^{\infty}na^n = (1-a)\sum _{n=1}^{\infty}na^n = a(1-a)\sum_{n=1}^{\infty}na^{n-1} = a(1-a)f&#039;(a)

where

f(x) = \sum_{n=1}^{\infty}x^n = \sum_{n=0}^{\infty}x^n - 1 = \frac{1}{1-x} - 1 = \frac{x}{1-x}

So

f&#039;(x) = \frac{(1-x) - x(-1)}{(1-x)^2} = \frac{1}{(1-x)^2}

So

f&#039;(a) = \frac{1}{(1-a)^2}

Finally, the desired number is:

a(1-a)\frac{1}{(1-a)^2} = \frac{a}{1-a}
 
thank you very much
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top