Is Antimatter the Other Half of Particles in Supersymmetry?

In summary: In most addition X + Y is the same as Y + X. That's not true in QM. Supersymmetry adds more terms to the equation to make them interchangeable.
  • #1
hsdrop
324
115
ok guys this should be a quick one... I hope lol
In supersymmetry could the other have of the particles be antimatter ?? its looking like the same thing to me... but I could be very wrong. But if I am, why would I be wrong ??

Susy-particles.jpg
1435504471_46ed2c40babcc6bacacc2743c3ed3bcd.jpg
thank you to anyone that takes the time to replay
 

Attachments

  • Susy-particles.jpg
    Susy-particles.jpg
    24.7 KB · Views: 4,091
  • Like
Likes atyy
Physics news on Phys.org
  • #2
No, the supersymmetric partner (SUSY particle) of a particle can't be its antiparticle. For one thing an antiparticle has the same mass, the partner doesn't. The role played by the partner, in enabling renormalization, couldn't be implemented by the antiparticle. Your first diagram, showing particles on the left and SUSY particles on the right, is not showing antiparticles explicitly, because they're assuming that's understood. Someone else could give a more technical explanation, I'm not very familiar with supersymmetry. But I'm quite sure of the answer: No :-)
 
  • #3
  • We found all the antimatter particles. We found none of the supersymmetric particles which have different properties.
  • Antimatter particles have the same spin as matter particles, supersymmetric partners do not. Antiparticles have the same masses as particles, supersymmetric partners do not.
  • Particles which don't have antimatter equivalents still have supersymmetric partners (if there is supersymmetry).
  • The Higgs sector looks different with supersymmetry.
  • Thinking that you can contribute an original idea to physics like that is absurd.
 
  • Like
Likes stoomart and hsdrop
  • #4
mfb said:
Thinking that you can contribute an original idea to physics like that is absurd.
sorry I was not trying to go for a contribute, I'm not even sure if I would know how to
I was just finding out what the differences between the straight and squiggly lines
and try to learn a little along the way:bugeye:
 
  • Like
Likes shrey07 and atyy
  • #5
The problem is the popular media. A popular science article might show the diagram of the particles and their antiparticles, and another popular science article might show a diagram of the particles and their super partners, without any explanation as to what these particles are, what their properties are, how we know they exist, or think they exist. Then a member of the public, without a scientific background, sees the diagrams, and thinks "Hey! What if they are the same?" The real fault lies with bad science journalism.
 
  • Like
Likes Quotidian and hsdrop
  • #6
David Neves said:
The problem is the popular media. A popular science article might show the diagram of the particles and their antiparticles, and another popular science article might show a diagram of the particles and their super partners, without any explanation as to what these particles are, what their properties are, how we know they exist, or think they exist. Then a member of the public, without a scientific background, sees the diagrams, and thinks "Hey! What if they are the same?" The real fault lies with bad science journalism.

thank you for answering the post. My self, I love almost all forms of science and try to learn as much as my little brian can understand every night before bed. I am so glad that we as a people/civilization have a way of communicating with with each other and can weed out the good info from the bad. I come to this forum and ask the questions that I do cause I seek the truth and not rely on bad science journalism
 
  • #7
Learning how to separate pop-science from real science is one of the more difficult things. Even harder is learning to separate simplifications used as learning tools from the more complex stuff.

If John Smith writes an article on hawking radiation and cites Stephen Hawking, it's probably crap.
If Hawking himself writes an article in a pop science magazine, it's accurate, but details like what virtual particles are have been glossed over or given a laymen explanation.
If Hawking submits a paper to a peer reviewed journal, it's good, but probably a little beyond most readers.

Antimatter came out of the formulation of QED. Dirac realized that there was no reason that an electron wave would only work if it was negatively changed, it was equally valid with the opposite.

Supersymmetry is attempting to solve a problem in the math of QM. The math of QM requires you to do the calculations of the fermions, then add the calculation of the bosons. That's weird. In most addition X + Y is the same as Y + X. That's not true in QM. Supersymmetry adds more terms to the equation to make them interchangeable.
 
Last edited:
  • Like
Likes hsdrop
  • #8
newjerseyrunner said:
Dirac realized that there was no reason that an electron wave would only work if it was negatively changed, it was equally valid with the opposite.
It was not only possible, it was a direct consequence of combining special relativity and quantum mechanics.
newjerseyrunner said:
Supersymmetry is attempting to solve a problem in the math of QM. The math of QM requires you to do the calculations of the fermions, then add the calculation of the bosons. That's weird. In most addition X + Y is the same as Y + X. That's not true in QM. Supersymmetry adds more terms to the equation to make them interchangeable.
What?

Without supersymmetry, the corrections to the Higgs mass diverge (more precisely: go up to the UV cutoff, like the Planck scale). There is no Y to add to an X, the X itself is the problem.
With supersymmetry, bosons cancel the contributions from fermions approximately, so the divergence gets much weaker (only with the logarithm of the mass). Here (!) you have to take care that you sum the contributions in the right way. You cannot calculate either X+Y nor Y+X naively because both terms diverge, only their sum evaluated in the right limit is well-defined and not as large as the Planck scale.
 
  • Like
Likes stoomart and newjerseyrunner
  • #9
mfb said:
What?
Your posts are my favorite thing about these forums.
 
  • #10
mfb said:
Without supersymmetry, the corrections to the Higgs mass diverge (more precisely: go up to the UV cutoff, like the Planck scale). There is no Y to add to an X, the X itself is the problem.
With supersymmetry, bosons cancel the contributions from fermions approximately, so the divergence gets much weaker (only with the logarithm of the mass). Here (!) you have to take care that you sum the contributions in the right way. You cannot calculate either X+Y nor Y+X naively because both terms diverge, only their sum evaluated in the right limit is well-defined and not as large as the Planck scale.

I am so sorry to ask this. Is there a way for you to simplify what you are describing so I can understand it a little better??

also I have somewhat of a good grasp of what antimatter is (because it easer to look up and understand for me at least) I'm just not quite sure how we can make antimatter particles to study them

I want to thank everyone for taking the time to answer my questions and being so very patient with me :bow:
 
Last edited:
  • #11
Sorry, that was mainly written for newjerseyrunner. I'll try to explain it in easier terms:

It is one of the theoretical issues of the standard model (which includes antiparticles, but no supersymmetry). Particle masses there depend on the existence of other particles because they interact with those particles. This effect is small for most particles, but it is important for the Higgs boson mass. If you try to calculate it, you get an integral that looks a bit like
$$\int_0^\infty 1 dx$$
Here x is an energy scale of the interaction. "Multiply 1 by infinity": The integral is not well-defined. We know that our theories break down where gravity gets relevant (this happens at the Planck mass mP), so it does not really make sense to include energy scales above the Planck mass:
$$\int_0^{m_P} 1 dx = m_P$$
"Multiply 1 by a large number": That works mathematically, the result is a large number. The Higgs mass mH is the sum of this contribution and a different mass source mb: mH = mP + mb. The value of this different mass source can be anything - it is a free parameter.

The Planck mass is about 10000000000000000000 GeV, the Higgs mass is 125 GeV. The units don't matter here, only the numbers are important. So we get an equation that looks like "add a number like 10000000000000000000 and a completely unrelated number, and the result is 125". That means mb is something like -9999999999999999874 GeV, extremely close to the Planck mass but not exactly identical. Possible? Yes. But it doesn't look likely. The problem is the huge Planck mass which enters the equation.

With supersymmetry, we get additional particles (the superpartners of the known particles). They also influence the particle masses, and it turns out that their effect is exactly the opposite. The integral from above is now zero:
$$\int_0^{m_P} (1-1) dx = 0$$
With this approach, regular particles and their superpartners would have identical masses. In this case we would have found the superpartners already, so this cannot be true. Supersymmetry must be broken (it is not exactly symmetric), and the superpartners have different masses. So we have to modify the integral again, and it now looks a bit like this:
$$\int_1^{m_P} (1-1+\frac{1}{x}) dx = ln(m_P)$$
I cheated a bit here to avoid introducing too many technical details. The main point: Instead of a huge number, with supersymmetry we just get the logarithm of a huge number - which is much more reasonable.

hsdrop said:
I'm just not quite sure how we can make antimatter particles to study them
Collide particles at high energies. In the collisions, all types of particles get produced. Usually as pairs of matter plus antimatter particle, which then fly apart.
 
  • Like
Likes nrqed and hsdrop

1. What is supersymmetry?

Supersymmetry is a theoretical concept in physics that proposes a symmetry between particles with integer spin (bosons) and particles with half-integer spin (fermions). It suggests that for every known particle, there exists a "superpartner" particle with a different spin. This theory aims to explain some of the unanswered questions in particle physics, such as the hierarchy problem and the nature of dark matter.

2. How does supersymmetry relate to the Standard Model?

Supersymmetry is an extension of the Standard Model of particle physics. It proposes that all known particles have a supersymmetric partner, which could explain some of the limitations and discrepancies of the Standard Model. It also provides a theoretical framework for unifying the fundamental forces of nature.

3. What is the difference between matter and antimatter?

Matter and antimatter are two types of particles that have opposite properties. Matter is made up of particles with positive charges, such as protons, neutrons, and electrons. Antimatter, on the other hand, is made up of particles with negative charges, such as antiprotons, antineutrons, and positrons. When matter and antimatter particles come into contact, they annihilate each other, releasing energy in the form of gamma rays.

4. What is antimatter used for?

Antimatter has various practical applications, such as in medical imaging and cancer treatment. It is also used in particle accelerators to produce high-energy collisions for research purposes. However, due to the difficulty and high cost of producing and storing antimatter, it is not currently used on a large scale.

5. What is the current status of supersymmetry and antimatter research?

Supersymmetry and antimatter continue to be active areas of research, with scientists conducting experiments and simulations to search for evidence of their existence. Some experiments, such as the Large Hadron Collider at CERN, have provided potential hints of supersymmetric particles, but further research is needed to confirm these findings. Additionally, advancements in technology have allowed for more precise measurements and observations of antimatter, providing new insights into its properties and behavior.

Similar threads

  • Beyond the Standard Models
4
Replies
105
Views
10K
  • Beyond the Standard Models
Replies
1
Views
2K
  • Astronomy and Astrophysics
Replies
8
Views
1K
  • Beyond the Standard Models
Replies
1
Views
2K
  • Astronomy and Astrophysics
Replies
5
Views
1K
  • Sci-Fi Writing and World Building
Replies
8
Views
3K
Replies
4
Views
1K
  • Beyond the Standard Models
Replies
13
Views
4K
Replies
4
Views
3K
  • Special and General Relativity
Replies
31
Views
1K
Back
Top