jtbell said:
The electric field produced by a moving charge is not spherically symmetric. The component along the direction of motion is reduced so you get a sort of pancake-shaped distribution.
quantum123 said:
Magnetic monopoles? How did you get that?
Perhaps my question was badly phrased or I don't get what you mean.
What I'm concern is the relative distance between a proton and an electron. Suppose I have a moving observer, say with speed v. Then, both proton and electron as seen by the observer is also moving with speed v. With Newtonian physics, the relative distance between the p and e stays the same as both moving with same speed.
With SR, the relative distance will contract, i.e. smaller than the proper distance. I view the distance as something like a ruler in the traditional textbook illustration.
If the distance is smaller (length contraction), then, with EM, this means the EM force is stronger. The component of the EM force being reduced along the direction of motion does not explain, nor does the non-spherical symmetric EM field of both particles,
because both of them are reduced by the same amount,
and what is of concern is the EM interaction between p and e but not with observer,
and a reduced EM component along the direction connecting p and e does not correspond to a shorter distance (length contraction) for EM attraction.
I was assuming quantum123 said that magnetic field exist between p and e. If that's so, that means both p and e now act like monopoles. But I agree that there would be magnetic fields, if there exist relative motion, but as measured by observer, not p or e. Sorry bout the confusion.