- #1
1d20
- 12
- 0
I’m doing a lot of double integrals to find surface area problems, and I don’t think I’m setting them up quite right. For example,
“Find the surface area of the portion of the sphere [itex] x^2 + y^2 + z^2 = 25 [/itex] inside the cylinder [itex]x^2 + y^2 = 9[/itex].”
I converted the sphere to a function of z: [itex]\sqrt{25 - x^2 - y^2} [/itex]
Then I found the partial derivatives:
fx = [itex]\frac{-x} {\sqrt{25 - x^2 - y^2}} [/itex]
fy = [itex]\frac{-y} {\sqrt{25 - x^2 - y^2}} [/itex]
Then I set up the integral:
SA = [itex]\int \int \sqrt{1 + (fx)^2 + (fy)^2} dx dy [/itex]
SA = [itex]\int \int \sqrt{1 + \frac{x^2} {25 - x^2 - y^2} + \frac{y^2} {25 - x^2 - y^2}} dx dy [/itex]
Adding fractions, I get:
SA = [itex]\int \int \sqrt{ \frac{25} {25 - x^2 - y^2} } dx dy [/itex]
Converting to polar, I get:
SA = [itex]\int_0^3 \int_0^{2\pi} r\sqrt{ \frac{25} {25 - r^2} } d\theta dr [/itex]
(That pi should be a part of the integral range, but I can’t find the fraking index of forum code.)
I can't think of a way to integrate this, so I think I didn't set it up right.
“Find the surface area of the portion of the sphere [itex] x^2 + y^2 + z^2 = 25 [/itex] inside the cylinder [itex]x^2 + y^2 = 9[/itex].”
I converted the sphere to a function of z: [itex]\sqrt{25 - x^2 - y^2} [/itex]
Then I found the partial derivatives:
fx = [itex]\frac{-x} {\sqrt{25 - x^2 - y^2}} [/itex]
fy = [itex]\frac{-y} {\sqrt{25 - x^2 - y^2}} [/itex]
Then I set up the integral:
SA = [itex]\int \int \sqrt{1 + (fx)^2 + (fy)^2} dx dy [/itex]
SA = [itex]\int \int \sqrt{1 + \frac{x^2} {25 - x^2 - y^2} + \frac{y^2} {25 - x^2 - y^2}} dx dy [/itex]
Adding fractions, I get:
SA = [itex]\int \int \sqrt{ \frac{25} {25 - x^2 - y^2} } dx dy [/itex]
Converting to polar, I get:
SA = [itex]\int_0^3 \int_0^{2\pi} r\sqrt{ \frac{25} {25 - r^2} } d\theta dr [/itex]
(That pi should be a part of the integral range, but I can’t find the fraking index of forum code.)
I can't think of a way to integrate this, so I think I didn't set it up right.
Last edited: