Surfaces and geodesics in General Relativity

student85
Messages
138
Reaction score
0
Hi all. This is one of the problems that I was asked to do for my General Relativity class. I know this may look a little long, but if anyone can help me out with ANYTHING about this problem, I will greatly appreciate it.

Homework Statement


Consider the family of hypersurfaces where each member is defined by the constancy of the function S(xc) over that hypersurface and further require that each hypersurface be a null hypersurface in the sense that its normal vector field, na = S|a , be a null vector field.
Let ¡ be a member of the family of curves that pierces each such hypersurface orthogonally, meaning that the tangent vector to ¡, say ka, is everywhere collinear with the vector na at the point of piercing. Show that ¡ is a null geodesic and find the condition on the relation between na and ka that allows the geodesic equation to be written in the simple form ka||bka = 0.
Interpret your results in terms of waves and rays.


Homework Equations


The geodesic equation: \ddot{x}e + \Gammaemb\dot{x}m \dot{x}b = 0


The Attempt at a Solution


By reading through the problem it is not very hard to get the hang of what it is saying, and it seems pretty clear that \Gamma must be a null surface. But I don't know where to get started in showing that it is a "null geodesic", and how to derive at the simple geodesic equation they give. I'm just very stuck here. If anyone can give me a little hint I would appreciate it. Thanks in advance.
 
Physics news on Phys.org
No relativists here? :S
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top