Swimmer's velocity relative to the shore (vectors)

AI Thread Summary
The discussion focuses on calculating a swimmer's velocity relative to the shore while swimming in a river with a current. The current flows at 1.33 m/s, and the swimmer's speed is 2.86 m/s relative to the water. The correct approach involves recognizing that swimming upstream means moving against the current, not perpendicular to it. The resultant speed upstream is calculated as 2.86 m/s - 1.33 m/s, resulting in 1.53 m/s. The confusion arose from misapplying vector addition, but the correct interpretation clarified the solution.
ulfy01
Messages
6
Reaction score
0

Homework Statement


A swimmer is training in a river. The current flows at 1.33 metres per second and the swimmer's speed is 2.86 metres per second relative to the water. What is the swimmer's speed relative to the shore when swimming upstream? What about downstream?

Homework Equations



Pythagoras.

The Attempt at a Solution



Here's my problem. Because we're looking at vectors, I would normally do the vector sum of both the velocities and use Pythagoras, as both given vectors are perpendicular.


Vcurrent = 1.33 m/s
Vswimmer relative to water = 2.86 m/s

So the resultant vector would be: \sqrt{}(1.332 + 2.862)

Giving 3.15 m/s, however this is wrong, as the answer given is 1.53 m/s upstream.

I'm puzzled as to how this answer was reached.
 
Physics news on Phys.org
The swimmer is not swimming across the river.
He is swimming against the current. That how normally swimmers trainned.
Now imagine you running in direction to the east at a speed 1.33 metres per second on a train with 1.33 metres per second speed heading west.
To the man on the platform seeing you not moving, but with respect of the train you are running at 1.33 metres per second in easterly direction.
 
Hi, ulfy01.

Note that "swimming upstream" means swimming in a direction opposite to the current, not perpendicular to the current. So, there is no right triangle here.

[oops: I'm a bit late here, sorry.]
 
I just realized this and made a fool of myself, really. Way to overthink a problem and not read it properly. I'll go hide in a corner now. Thanks azizlwl!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top