Tangential Acceleration/Tension

  • Thread starter Thread starter srekai
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on calculating the angle θ of a fuzzy die hanging from a car's rearview mirror as the car rounds a curve of radius R at speed v. The key equations used include Newton's second law, with the tension force expressed as F_tension = mg/cos(θ) and the relationship tan(θ) = v²/(rg). The solution was validated, but a critical error was identified regarding the classification of forces, specifically the mislabeling of the radial force as tangential. The correct interpretation involves recognizing the tension and gravitational forces, with the need for clarity on the role of centrifugal force in non-inertial frames.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with trigonometric functions and their applications in physics
  • Knowledge of circular motion dynamics
  • Ability to interpret free body diagrams
NEXT STEPS
  • Review the principles of circular motion and centripetal acceleration
  • Study the differences between inertial and non-inertial reference frames
  • Learn about free body diagram construction and analysis
  • Explore the implications of tension in non-linear motion scenarios
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of forces in circular motion, particularly in automotive contexts.

srekai
Messages
8
Reaction score
0
I did the problem, just want to validate my solution/approach

1. Homework Statement

Your car happens to have a fuzzy die hanging from the rear view mirror. As you round a curve that is approximately a circle of radius R you notice that the fuzzy die makes an angle θ with the vertical. What is the angle θ as a function of R and your speed v?

Homework Equations


$$\sum F = ma$$
$$F = \frac{mv^2}{r}$$

The Attempt at a Solution


There are 3 forces on the dice as shown in the free body diagram attachment
FBD.png


From this the sum of the vertical forces and horizontal forces must cancel out, so we can say
$$F_{\text{tension,y}} = F_{\text{gravity}}$$
$$F_{\text{tension}} \cdot cos \theta = F_{\text{gravity}}$$
$$F_{\text{tension}} \cdot cos \theta =mg$$
$$F_{\text{tension}}= \frac{mg}{cos \theta}$$
and
$$F_{\text{tension,x}} = F_{\text{tangential}}$$
$$F_{\text{tension}} \cdot sin \theta = F_{\text{tangential}}$$
$$F_{\text{tension}} \cdot sin \theta = \frac{mv^2}{r}$$
$$ \frac{mv^2}{r} = mg \cdot \frac{sin \theta}{cos \theta}$$
$$tan \theta = \frac{v^2}{rg}$$
$$\theta = tan^{-1}\frac{v^2}{rg}$$
 

Attachments

  • FBD.png
    FBD.png
    7.3 KB · Views: 1,231
Last edited:
Physics news on Phys.org
Your idea is fine but you made an error in solving for ##\tan(\theta)## (check the units, you cannot take the arctan of a dimensionful number!). Alternatively you can immediately conclude that the tension force, gravity, and tangential force must form a right triangle where the tension force is the hypothenuse, the gravitational force is the side closest to the angle ##\theta##, and the tangential force the far side. It directly follows that
$$
\tan(\theta) = \frac{F_{\rm tang}}{F_g} = \ldots
$$
(I am leaving the dots for you to get the correct expression yourself)

Edit: Note that ##gv^2/r## has dimension ##\mathsf{L^2/T^4}##, i.e., not dimensionless.
 
srekai: Your solution is correct. v^2 / rg is in fact dimensionless.
 
Dr Dr news said:
srekai: Your solution is correct. v^2 / rg is in fact dimensionless.
He obviously edited that after my post.
 
I have one remark and one question.
1. The component F sinθ should be in the radial direction, not tangential. It is pointing towards the center of the circle.
2. What is exerting the tangential force? I see only two forces, the tension and gravity.
 
Chandra Prayaga said:
I have one remark and one question.
1. The component F sinθ should be in the radial direction, not tangential. It is pointing towards the center of the circle.
2. What is exerting the tangential force? I see only two forces, the tension and gravity.
All that is wrong in @srekai's (edited) solution is the reference to "tangential" force. A tangential force would be normal to the string, and as you say there is no such force present. But if we label it centrifugal force instead it all works.
 
Absolutely. Agreed, provided the student is aware that the centrifugal force is present only in the noninertial frame of the car. In an inertial frame, the student's algebra would still be fine with only the tension and gravity present, and Newton's second law is applied
 

Similar threads

Replies
3
Views
645
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
694
Replies
46
Views
5K