Taylor Expanding Two Equations: Analysis & Results

latentcorpse
Messages
1,411
Reaction score
0
I have two equations:

\ddot{x}^\mu + \ddot{y}^\mu + \Gamma^\mu{}_{\nu \lambda} (x+y)(\dot{x}^\nu+\dot{y}^\nu)(\dot{x}^\lambda+\dot{y}^\lambda)=0
and
\ddot{x}^\mu + \Gamma^\mu{}_{\nu\lambda}(x) \dot{x}^\nu \dot{x}^\lambda=0

apparently if i taylor expand the first equation to first order and then subtract the second equation i should get

\ddot{y}^\mu + \frac{\partial \Gamma^\mu{}_{\nu\lambda}}{\partial x^\rho} \dot{x}^\nu \dot{x}^\lambda y^\rho = 0

i cannot show this. how do we go about taylor expanding something like that?
 
Physics news on Phys.org
Same way you'd expand any other function f:\mathbb R^4\rightarrow \mathbb R.

f(x+y)=f(x)+y^\rho f_{,\rho}(x)+\mathcal O(y^2)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top