Taylor expansion of second order

Click For Summary
SUMMARY

The discussion focuses on the Taylor expansion of second order for two functions: \(f(x, y)=(x+y)^2\) and \(f(x, y)=e^{-x^2-y^2}\cos(xy)\), both centered at the point \((0, 0)\). The participants confirm the correctness of the expansions, noting that for the first function, the remainder term \(R_2(\overrightarrow{h}, \overrightarrow{0})\) equals zero, while for the second function, the second derivatives at the origin are calculated as \(\frac{\partial^2{f}}{\partial{x^2}}(0,0)=-2\) and \(\frac{\partial^2{f}}{\partial{y^2}}(0,0)=-2\). Some discrepancies in the calculation of mixed partial derivatives were pointed out, but the overall formulations were deemed accurate.

PREREQUISITES
  • Understanding of multivariable calculus, specifically Taylor series expansions.
  • Familiarity with partial derivatives and their notation.
  • Knowledge of exponential and trigonometric functions in calculus.
  • Ability to manipulate polynomial expressions and remainder terms in Taylor expansions.
NEXT STEPS
  • Study the derivation of Taylor series for functions of multiple variables.
  • Learn about the implications of the remainder term in Taylor expansions.
  • Explore the application of Taylor expansions in optimization problems.
  • Investigate the relationship between Taylor series and numerical methods for function approximation.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and analysis, as well as researchers needing to apply Taylor expansions in their work.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to find the Taylor expansion of second order of the following functions with center the given point $(x_0, y_0)$.

  1. $f(x, y)=(x+y)^2, x_0=0, y_0=0$
  2. $f(x, y)=e^{-x^2-y^2}\cos (xy), x_0=0, y_0=0$

I have done the following:

The Taylor expansion of second order of $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is:

$$f(\overrightarrow{x_0}+\overrightarrow{h})=f(\overrightarrow{x_0})+\sum_{i=1}^{n}h_i \frac{\partial{f}}{\partial{x_i}}(\overrightarrow{x_0})+\frac{1}{2}\sum_{i,j=1}^{n}h_ih_j\frac{\partial^2{f}}{\partial{x_i}\partial{x_j}}(\overrightarrow{x_0})+R_2(\overrightarrow{h}, \overrightarrow{x_0})$$

where $\frac{R_2(\overrightarrow{h}, \overrightarrow{x_0})}{||\overrightarrow{h}||^2} \rightarrow 0$ when $\overrightarrow{h} \rightarrow \overrightarrow{0}$.

  1. $$f((x_0, y_0)+(h_1, h_2))=f(x_0, y_0)+h_1\frac{\partial{f}}{\partial{x}}(x_0, y_0)+h_2\frac{\partial{f}}{\partial{y}}(x_0, y_0)+\frac{1}{2}h_1^2\frac{\partial^2{f}}{\partial{x^2}}(x_0, y_0)+\frac{1}{2}h_1 h_2 \frac{\partial^2{f}}{\partial{x}\partial{y}}(x_0, y_0)+\frac{1}{2}h_2h_1\frac{\partial^2{f}}{\partial{y}\partial{x}}(x_0, y_0)+\frac{1}{2}h_2^2\frac{\partial^2{f}}{\partial{y^2}}(x_0, y_0)+R_2(\overline{h}, (x_0, y_0))$$

    We have:

    $$f(0, 0)=0 \\ \frac{\partial{f}}{\partial{x}}=2(x+y) \Rightarrow \frac{\partial{f}}{\partial{x}}(0,0)=0 \\ \frac{\partial{f}}{\partial{y}}=2(x+y) \Rightarrow \frac{\partial{f}}{\partial{y}}(0,0)=0 \\ \frac{\partial^2{f}}{\partial{x^2}}=2 \Rightarrow \frac{\partial^2{f}}{\partial{x^2}}(0,0)=2 \\ \frac{\partial^2{f}}{\partial{y^2}}=2 \Rightarrow \frac{\partial^2{f}}{\partial{y^2}}(0,0)=2 \\ \frac{\partial^2{f}}{\partial{x}\partial{y}}=2 \Rightarrow \frac{\partial^2{f}}{\partial{x}\partial{y}}(0,0)=2$$

    So $$f(h_1, h_2)=\frac{1}{2}h_1^22+h_1h_22+\frac{1}{2}h_2^22+R_2(\overrightarrow{h}, \overrightarrow{0})=h_1^2+2h_1h_2+h_2^2+R_2(\overrightarrow{h}, \overrightarrow{0})=(h_1+h_2)^2+R_2(\overrightarrow{h}, \overrightarrow{0})$$ Since $f(h_1, h_2)=f(h_1, h_2)+R_2(\overrightarrow{h}, \overrightarrow{0})$

    so $R_2(\overrightarrow{h}, \overrightarrow{0})=0$
  2. $$f((x_0, y_0)+(h_1, h_2))=f(x_0, y_0)+h_1\frac{\partial{f}}{\partial{x}}(x_0, y_0)+h_2\frac{\partial{f}}{\partial{y}}(x_0, y_0)+\frac{1}{2}h_1^2\frac{\partial^2{f}}{\partial{x^2}}(x_0, y_0)+\frac{1}{2}h_1 h_2 \frac{\partial^2{f}}{\partial{x}\partial{y}}(x_0, y_0)+\frac{1}{2}h_2h_1\frac{\partial^2{f}}{\partial{y}\partial{x}}(x_0, y_0)+\frac{1}{2}h_2^2\frac{\partial^2{f}}{\partial{y^2}}(x_0, y_0)+R_2(\overrightarrow{h}, (x_0, y_0))$$

    We have:

    $$f(0,0)=1 \\ \frac{\partial{f}}{\partial{x}}=e^{-x^2-y^2}(-2x\cos (xy)-y\sin (xy)) \Rightarrow \frac{\partial{f}}{\partial{x}}(0,0)=0 \\ \frac{\partial{f}}{\partial{y}}=e^{-x^2-y^2}(-2y\cos (xy)-x\sin (xy)) \Rightarrow \frac{\partial{f}}{\partial{y}}(0,0)=0 \\ \frac{\partial^2{f}}{\partial{x^2}}=e^{-x^2-y^2}((4x^2-y^2-2)\cos (xy)+4xy\sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{x^2}}(0,0)=-2 \\ \frac{\partial^2{f}}{\partial{y^2}}=e^{-x^2-y^2}((-4y^2-xy-2)\cos (xy)+4 xy \sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{y^2}}(0,0)=-2 \\ \frac{\partial^2{f}}{\partial{x}\partial{y}}=e^{-x^2-y^2}(3xy \cos(xy)+(2y^2+2xy-1)\sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{x}\partial{y}}(0,0)=0$$

    So $$f(h_1, h_2)=1+\frac{1}{2}h_1^2(-2)+\frac{1}{2}h_2^2(-2)+R_2(\overrightarrow{h}, \overrightarrow{0})=1-h_1^2-h_2^2+R_2(\overrightarrow{h}, \overrightarrow{0})$$
    where $\frac{R_2(\overrightarrow{h}, \overrightarrow{0})}{||\overrightarrow{h}||^2} \rightarrow 0$ when $\overrightarrow{h} \rightarrow \overrightarrow{0}$.

Is this correct?? (Wondering) Could I improve something at the formulation?? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hi! (Blush)

mathmari said:
  1. $f(x, y)=(x+y)^2, x_0=0, y_0=0$

You're expansion looks fine. (Nod)

You can do it a bit quicker though.
From the definition of $f$ we have:
$$f(x_0+h_1, y_0+h_2)=f(0+h_1, 0+h_2)=(h_1+h_2)^2=h_1^2 + 2h_1 h_2 + h_2^2$$
This is a 2nd order polynomial and as such it will be equal to the Taylor expansion with $R_2(\overrightarrow{h}, \overrightarrow{0})=0$. (Emo)
2. $f(x, y)=e^{-x^2-y^2}\cos (xy), x_0=0, y_0=0$

$$\frac{\partial{f}}{\partial{x}}=e^{-x^2-y^2}(-2x\cos (xy)-y\sin (xy)) \Rightarrow \frac{\partial{f}}{\partial{x}}(0,0)=0 \\ \frac{\partial{f}}{\partial{y}}=e^{-x^2-y^2}(-2y\cos (xy)-x\sin (xy)) \Rightarrow \frac{\partial{f}}{\partial{y}}(0,0)=0 \\ \frac{\partial^2{f}}{\partial{x^2}}=e^{-x^2-y^2}((4x^2-y^2-2)\cos (xy)+4xy\sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{x^2}}(0,0)=-2 \\ \frac{\partial^2{f}}{\partial{y^2}}=e^{-x^2-y^2}((-4y^2-xy-2)\cos (xy)+4 xy \sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{y^2}}(0,0)=-2 \\ \frac{\partial^2{f}}{\partial{x}\partial{y}}=e^{-x^2-y^2}(3xy \cos(xy)+(2y^2+2xy-1)\sin (xy)) \Rightarrow \frac{\partial^2{f}}{\partial{x}\partial{y}}(0,0)=0$$

I believe your calculations of $\frac{\partial^2{f}}{\partial{y^2}}$ and $\frac{\partial^2{f}}{\partial{x}\partial{y}}$ are not correct although the resulting values are correct. (Worried)

For the rest it looks fine to me. (Nod)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
493
  • · Replies 3 ·
Replies
3
Views
2K