Taylor Series: Simple Homework Statement, Find 1st & 2nd Terms

clandarkfire
Messages
31
Reaction score
0

Homework Statement


"Determine the first two non-vanishing terms in the Taylor series of \frac{1-\cos(x)}{x^2} about x = 0 using the definition of the Taylor series (i.e. compute the derivatives of the function)."

So I know how compute the Taylor series about x=0; it involves finding f(0), f'(0), f''(0), etc. But In this particular case, it seems that f(0) and all the derivatives are undefined at x=0. This presents a problem.

I know that I can just replace cos(x) with it's Taylor series, which would make this easy, but the question specifically tells me not to..

What am I missing?
 
Physics news on Phys.org
clandarkfire said:

Homework Statement


"Determine the first two non-vanishing terms in the Taylor series of \frac{1-\cos(x)}{x^2} about x = 0 using the definition of the Taylor series (i.e. compute the derivatives of the function)."

So I know how compute the Taylor series about x=0; it involves finding f(0), f'(0), f''(0), etc. But In this particular case, it seems that f(0) and all the derivatives are undefined at x=0. This presents a problem.

I know that I can just replace cos(x) with it's Taylor series, which would make this easy, but the question specifically tells me not to..

What am I missing?

I believe the question would want you to use the Taylor expansion of cos(x). The question doesn't say not to anywhere.
 
I don't think so; it says to compute the derivatives of the function. Also, part b of the question asks me to use the Taylor expansion of cos(x) and compare it with the result from this part.
 
clandarkfire said:
I don't think so; it says to compute the derivatives of the function. Also, part b of the question asks me to use the Taylor expansion of cos(x) and compare it with the result from this part.

Ah that's an interesting approach then. Start taking a few derivatives and rather than considering what's happening precisely at ##x=0##, use limits to your advantage ( You'll notice a pattern by the 3rd and 5th derivatives ).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top