We shall try to understand where this 'amazing' low entropy comes from in the actual world that we inhabit. Let us start with ourselves. If we can understand where our own low entropy came from, then we should be able to see where the low entropy in the gas held by the partition came from--or in the water glass on the table, or in the egg held above the frying pan, or the lump of sugar held over the coffee cup. In each case a person or collection of people (or perhaps a chicken!) was directly or indirectly responsible. It was, to a large extent, some small part of the low entropy state in ourselves which was actually made use of in setting up these other low-entropy states. Additional factors might have been involved. Perhaps a vacuum pump was used to suck the gas to the corner of the box behind the partition. If the pump was not operated manually, then it may have been that some 'fossil fuel' (e.g. oil) was burnt in order to provide the necessary low-entropy energy for its operation. Perhaps the pump was electrically operated, and relied, to some extent, on the low-entropy energy stored in the uranium fuel of a nuclear power station. I shall return to these other low-entrop sources later, but let us first just consider the low entropy in ourselves.
Where indeed does our own low entropy come from? The organization in our bodies comes from the food that we eat and the oxygen that we breathe. Often one hears it stated that we obtain energy from our intake of food and oxygen, but there is a clear sense in which that is not really correct. It is true that the food we consume does combine with this oxygen that we take into our bodies, and that this provides us with energy. But, for the most part, this energy leaves our bodies again, mainly in the form of heat. Since energy is conserved, and since the actual energy content of our bodies remains more-or-less constant throughout our adult lives, there is no need simply to add to the energy content of our bodies. We do not need more energy within ourselves than we already have. In fact we do add to our energy content when we put on weight--but that is not usually considered desirable! Also, as we grow up from childhood we increase our energy content considerably as we build up our bodies; that is not what I am concerned about here. The question is how we keep ourselves alive throughout our normal (mainly adult) lives. For that, we do not need to add to our energy content.
However, we do need to replace the energy that we continually lose in the form of heat. Indeed, the more 'energetic' that we are, the more energy we actually lose in this form. All this energy must be replaced. heat is the most disordered form of energy that there is, i.e. it is the highest-entropy form of energy. We take in energy in a low-entropy form (food and oxygen) and we discard it in a high-entropy form (heat, carbon dioxide, excreta). We do not need to gain energy from our environment, since energy is conserved. But we are continually fighting against the second law of thermodynamics. Entropy is not conserved; it is increasing all the time. To keep ourselves alive, we need to keep lowering the entropy that is within ourselves. We do this by feeding on the low-entropy combination of food and atmospheric oxygen, combining them within our bodies, and discarding the energy, that we would otherwise have gained, in high-entropy form. In this way, we can keep the entropy in our bodies from rising, and we can maintain (and even increase) our internal organization. (See Schrodinger 1967.)
Where does this supply of low entropy come from? If the food that we are eating happens to be meat (or mushrooms!), then it, like us, would have relied on a further external low-entropy source to provide and maintain its low-entropy structure. That merely pushes the problem of the origin of the external low entropy to somewhere else. So let us suppose that we (or the animal or mushroom) are consuming a plant. We must all be supremely grateful to the green plants--either directly or indirectly--for their cleverness: taking atmospheric carbon dioxide, separating the oxygen from the carbon, and using that carbon to build up their own substance. This procedure, photosynthesis, effects a large reduction in the entropy. We ourselves make use of this low-entropy separation by, in effect, simply recombining the oxygen and carbon within our own bodies. How is it that the green plants are able to achieve this entropy-reducing magic? They do it by making use of sunlight. The light from the sun brings energy to the Earth in a comparatively low-entropy form, namely in the photons of visible light. The earth, including its inhabitants, does not retain this energy, but (after some while) re-radiates it all back into space. However, the re-radiated energy is in a high-entropy form, namely what is called 'radiant heat'--which means infrared photons. Contrary to a common impression, the Earth (together with its inhabitants) does not gain energy from the sun! What the Earth does is to take the energy in a low-entropy form, and then spew it all back again into space, but in a high-entropy form. What the sun has done for us is to supply us with a huge source of low entropy. We (via the plants' cleverness), make use of this, ultimately extracting some tiny part of this low entropy and converting it into the remarkable and intricately organized structures that are ourselves.