Yeah, I got it!
For the first drop, the required time is ##\sqrt{ \frac {2h}{g}}## ; [ as, ##h = \frac{1}{2} gt^2## ]
Then, the time interval between the first and second drop is ##2 \sqrt{ \frac {2(\frac {3}{4} h)}{g}}## ; [the time for going up to the maximum height of ##\frac{3}{4} h## and returning to ground]
In the same way, the time interval between the second and third drop is ##2 \sqrt{ \frac {2((\frac {3}{4})^2 h)}{g}}## , and so on.
Hence the total time required for coming to at rest is,
##t = \sqrt{ \frac {2h}{g}} + 2 \sqrt{ \frac {2(\frac {3}{4} h)}{g}} + 2 \sqrt{ \frac {2((\frac {3}{4})^2 h)}{g}} + ... ##
And I can easily get the summation of this infinite geometric series, as the ratio is less than 1. But at the first sight at the problem, it seemed impossible for the ball to come to at rest because infinite number of drops are needed before coming to at rest. Would you please help me to visualize what actually happens?