Tensor products of representations

math101
Messages
1
Reaction score
0
I'm a mathematician, and I have trouble understanding the physics notation. I'm glad if someone could help me out.

Here's my question:
Let g be a Lie algebra and r_1: g -> End(V_1), r_2: g -> End(V_2) be two representations.
Then there is a representation r3:=r_1 \otimes r_2: g -> End (V_1 \otimes V_2)
given by r3(x)(v_1 \otimes v_2):=r1(x)(v_1) \otimes v_2 + v_1\otimes r_2(x)(v_2),
which is called the tensor product of the representations.

An example is given by the vector-spinor representation of so(2k): Take the standard representation of so(2k) on V_1=R^{2k} and the spin-representation on V_2=R^{2^(k)}, then the tensor product is a representation on a 2k*2^k dimensional vector space V_1 \otimes V_2

Now, say in Palmkvist's Ph.D. thesis (http://front.math.ucdavis.edu/0912.1612), p. 41,
he tries to extend the vector-spinor representation of so(10) to k(E_10).
He writes

J^{abc} \psi^d=...
(on the bottom of p.41).

Here J^{abc} is an element of k(E_10) - but what is \psi^d? It must be a vector in V_1 \otimes V_2, but which one? Is it one of the form e_1 \otimes v_k, where (e_i) is the standard basis of R^10 and (v_k) is a basis of R^32?

-- If this is a too specialized question, I'd be happy if someone could me give a link to vector-spinor representations in physics, maybe I can learn enough from the literature to answer it then myself. Thank you!
 
Physics news on Phys.org
math101 said:
what is \psi^d? It must be a vector in V_1 \otimes V_2, but which one?
It's any one. \psi^d is any vector in V_1 \otimes V_2. Note that there is a suppressed spinor index as well.

This paper seems to me to have poor notation in general.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top