- 1,753
- 143
Homework Statement
Test the series for convergence or divergence
<br /> \sum\limits_{n = 1}^\infty {\left( { - 1} \right)^{n - 1} \frac{{\ln n}}{n}} <br />
Homework Equations
If <br /> b_{n + 1} \le b_n \,\& \,\mathop {\lim }\limits_{n \to \infty } b_n = 0<br />
then the series is convergent.
The Attempt at a Solution
<br /> b_n = \frac{{\ln n}}{n},\,\,\mathop {\lim }\limits_{n \to \infty } b_n = \mathop {\lim }\limits_{n \to \infty } \frac{{\ln n}}{n} = \frac{\infty }{\infty } = \mathop {\lim }\limits_{n \to \infty } \frac{{\left( {\ln n} \right)^\prime }}{{\left( n \right)^\prime }} = \mathop {\lim }\limits_{n \to \infty } \frac{{1/n}}{1} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{n} = 0<br />
so it passes the 2nd test.
<br /> \begin{array}{l}<br /> {\rm{when }}n = 1,\,\frac{{\ln n}}{n} = 0 \\ <br /> {\rm{when }}n = 2,\,\frac{{\ln 2}}{2} = 0.35 \\ <br /> \\ <br /> {\rm{when }}n = 1,\,b_n = 0,\,b_{n + 1} = 0.35\, > 0,\,b_{n + 1} > b_n \\ <br /> \end{array}<br />
so it fails the 1st test, hence is divergent
But the example says:
<br /> \begin{array}{l}<br /> \left( {\frac{{\ln n}}{n}} \right)^\prime = \frac{{\left( {\ln n} \right)^\prime \left( n \right) - \left( {\ln n} \right)\left( n \right)^\prime }}{{\left( n \right)^2 }} = \frac{{\left( {1/n} \right)n - \left( {\ln n} \right)\left( 1 \right)}}{{n^2 }} = \frac{{1 - \ln n}}{{n^2 }} \\ <br /> \\ <br /> \frac{{1 - \ln x}}{{x^2 }} \le 0\,{\rm{whenever }}x \ge 1 \\ <br /> \end{array}<br />
Therefore it passes both tests and is convergent.
But if I graph the derivative:
I get both positive and negative values past x=1, so is the example wrong when it says that when x>=1 that the derivitave is always <=0? Or did I make a mistake?