High School Understanding Spacetime Diagrams | Basics Explained

Click For Summary
SUMMARY

This discussion focuses on the creation and understanding of spacetime diagrams, particularly Minkowski diagrams, in the context of special relativity. Key points include the representation of light's worldline at 45 degrees, the determination of angles in moving frames related to velocity (v/c), and the use of the Lorentz factor to size tick marks. The conversation emphasizes the utility of interactive tools, such as the animated Minkowski diagram tool and GeoGebra, for visualizing Lorentz transformations and hyperbolic paths in spacetime.

PREREQUISITES
  • Understanding of Lorentz transformations
  • Familiarity with Minkowski diagrams
  • Knowledge of the Lorentz factor
  • Basic concepts of special relativity
NEXT STEPS
  • Explore the use of GeoGebra for creating interactive spacetime diagrams
  • Learn about the Doppler effect in the context of spacetime diagrams
  • Investigate the mathematical properties of hyperbolas in special relativity
  • Study the implications of simultaneity in different inertial frames
USEFUL FOR

Students and educators in physics, particularly those focusing on special relativity, as well as anyone interested in visualizing complex concepts in spacetime through diagrams and interactive tools.

Grasshopper
Gold Member
Messages
210
Reaction score
115
Spacetime diagrams seem to be the most used explanation for relativity weirdness, so I’d like some clarification in how to make them, it anyone wants to help.

(1) Light’s worldline is 45 degrees, obviously. No issues there, I don’t think.

(2) How do I determine the angles of the moving frame? I would imagine it is related to v/c. Maybe c/v.

(3) How do I determine the size of the tick marks on the moving frame? This, I assume, must be related to the Lorentz factor.

I’m sure there are brainless ways to do it. And I could probably find it through google. But I trust this community more than a random internet search.

Thanks to all replies.
 
Physics news on Phys.org
Write down a point an event on the ##t'## axis and inverse Lorentz transform it to get its ##x,t## coordinates. Ditto the ##x'## axis. Repeat for a few points events (or just write it generally in the first place) to confirm the axes are straight lines.

Useful thing to consider: as you vary ##v## what path does ##x,t## trace out?
 
Last edited:
  • Like
Likes Grasshopper
Ibix said:
Write down a point on the ##t'## axis and inverse Lorentz transform it to get its ##x,t## coordinates. Ditto the ##x'## axis. Repeat for a few points (or just write it generally in the first place) to confirm the axes are straight lines.

Useful thing to consider: as you vary ##v## what path does ##x,t## trace out?
My guess is that it’s a hyperbola, although this is based only on the algebra of the Lorentz factor. I will have to test this when I get my calculator though.

But you’re answer actually seems kind of obvious in hindsight. Lorentz transforming would clearly give the correct values.
 
  • Like
Likes vanhees71 and Ibix
Your guess is correct.

Minkowski diagrams are, indeed, incredibly simple. Once you get that "events move along a hyperbola when boosted" thing into your head, and remember which direction they move when boosted by ##\pm v##, they're a very good way of visualising how a Lorentz boost is going to come out before you do the maths.

If you've got a device with a mouse rather than a touchscreen, my old animated Minkowski diagram tool (ibises.org.uk/Minkowski.html) let's you sketch scenarios and then animate boosts. If you only have a touchscreen the UI doesn't work so well, but you can still see canned diagrams (click buttons near the bottom of the page) and boost them. There's a diagram of hyperbolae, which you can watch being invariant (analogous to concentric circles under rotation in Euclidean geometry).
 
  • Like
Likes vanhees71 and Grasshopper
It turns out that you don't need to explicitly draw a hyperbola.
Instead, with one corner fixed at the center of the hyperbola, draw equal-area "[causal] diamonds", which are parallelograms with edges parallel to the light cone.

The timelike diagonal is along the worldline with a chosen velocity.
The spacelike diagonal is along the line of simultaneity for that worldline.
The stretching and shrinking factor of the reshaped diamond is the Doppler factor, k.
The diamonds are the spacetime-diagrams of light clocks.

Visit my PF Insights:
https://www.physicsforums.com/insights/spacetime-diagrams-light-clocks/
https://www.physicsforums.com/insights/relativity-rotated-graph-paper/

This links to an early draft of my paper and a link to the published version:
https://arxiv.org/abs/1111.7254

Interactive visualizations are useful to get an intuition.
Here are some I made:
For more emphasis on hyperbolas (and "circles"), here are some I did in Desmos (where you can more easily see the underlying equations):
Use the E-slider to the geometric analogies from a circle (in Euclidean geometry), a Galilean-circle (in Galilean relativity), and a hyperbola (in Special Relativity)
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

Replies
8
Views
652
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 37 ·
2
Replies
37
Views
7K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K