SW VandeCarr said:
However, my impression was that SI avoided the weirdness of the wave function collapse and parallel universes. Are you saying that SI preserves superposition in a one particle system; or, as you say and I said originally in post 1, it simply ignores quantum reality and deals only with objective results. In that case it's the same as "shut up and calculate", is it not?
When you calculate the probabilities of the possible results of a specific experiment, you will still have to take the state before the measurement to be a superposition, if the system has been prepared that way. So you're not getting rid of superpositions.
I still think of a measurement as an interaction that, through the process of decoherence, entangles the eigenstates of some operator with macroscopically distinguishable states of a system that for practical purposes can be considered classical. So we're not getting rid of decoherence either. I don't think decoherence has solved the "measurement problem", but it has given us the best definition we have of what a measurement is.
Isham had some very interesting comments about wavefunction collapse in his book. Suppose a silver atom prepared in the spin state |s>=|+>+|-> is sent through a Stern-Gerlach apparatus without any kind of detector to tell us where the atom has ended up. The interaction with the apparatus entangles the spin states with position eigenstates, so that the time evolution of the |position>|spin> state is
|center>|s> → |left>|+>+|right>|->
What Isham pointed out is that if we now put a measuring device (e.g. another Stern-Gerlach apparatus with a different orientation, and with particle detectors at the positions of its outgoing beams) in the position where the right "beam" comes out, we're going to have to take the state before the measurement to be |right>|->. We still haven't measured anything, but we have "collapsed" the wavefunction simply
by putting the measuring device on the right. This illustrates the importance of distinguishing between state preparation and measurement, and that the "collapse" isn't a physical process at all (in this "interpretation"). It's just a selection of what to measure.
The difference between this and "shut up and calculate" is mainly a difference of attitude. They seem to be thinking a) "we don't need to know what the correct interpretation is to be able to use QM", and b) "finding a good interpretation is difficult and takes too much time". We're saying that a) "we have realized that QM doesn't
need an interpretation" (which is a fairly deep philosophical insight), and b) "we don't think QM
can be interpreted". (We have arguments for this, but no proof at this time). At least that's what
I'm saying. I don't really know if Ballentine and Isham would agree with everything I'm saying.
The phrase "shut up and calculate" is supposed to be an answer to questions like "What does quantum mechanics really describe?". It's an answer you might give if you think the question is stupid, or not at all interesting. I don't think it's a bad question. I think it's based on some misconceptions, but you won't realize that until you've thought about it, and that question is a good starting point.
This "interpretation" doesn't rule out many worlds. It's saying that a state vector represents objective properties of an ensemble of identically prepared systems, and it wouldn't be crazy to think of the ensemble as consisting of many identical systems in different worlds. This touches on what Civilized said. Now we're actually talking about interpretations of probability.