MHB The Euler Maclaurin summation formula and the Riemann zeta function

polygamma
Messages
227
Reaction score
0
The Euler-Maclaurin summation formula and the Riemann zeta function

The Euler-Maclaurin summation formula states that if $f(x)$ has $(2p+1)$ continuous derivatives on the interval $[m,n]$ (where $m$ and $n$ are natural numbers), then

$$ \sum_{k=m}^{n-1} f(k) = \int_{m}^{n} f(x) \ dx - \frac{1}{2} \Big( f(n)-f(m) \Big) + \sum_{j=1}^{p} \frac{B_{2j}}{(2j)!} \Big( f^{(2j-1)}(n) - f^{(2j-1)} (m) \Big)$$

$$ + \frac{1}{(2p+1)!}\int_{m}^{n} B_{2p+1}(x-\lfloor x \rfloor ) f^{(2p+1)}(x) \ dx $$

where $B_{j}$ are the Bernoulli numbers and $B_{j}(x)$ are the Bernoulli polynomials.


You can derive the formula by first repeatedly integrating $ \displaystyle \int_{0}^{1} f(x) \ dx = \int_{0}^{1} B_{0}(x) f(x) \ dx$ by parts. Then replace $f(x)$ with $f(x+k)$ and sum both sides of equation from $m$ to $n-1$.By applying the Euler Macluarin summation formula to $ \displaystyle \sum_{k=n}^{\infty} {k^{-s}}$ show that for $\text{Re}(s) > -3$, $$ \zeta(s) = \lim_{n \to \infty} \left( \sum_{k=1}^{n} k^{-s} - \frac{n^{1-s}}{1-s} - \frac{n^{-s}}{2} + \frac{s n^{-s-1}}{12} \right) . $$Then use the representation to show that $ \displaystyle \zeta'(-1) = \frac{1}{12} - \log A$ where $A$ is the Glaisher-Kinkelin constant given by

$$A = \lim_{n \to \infty} \frac{\prod_{k=1}^{n} k^{k}}{n^{n^{2}+n/2+1/12} e^{-n^{2}/4}} . $$
 
Last edited:
Mathematics news on Phys.org
$$ \sum_{k=m}^{\infty} k^{-s} = \zeta(s) - \sum_{k=1}^{m-1} k^{-s} = \zeta(s) - \sum_{k=0}^{m} k^{-s} + m^{-s} $$

$$ = \int_{m}^{\infty} x^{-s} \ dx - \frac{1}{2} \Big( 0 - m^{-s} \Big) + \frac{1/6}{2!} \Big( 0 - sm^{-s-1} \Big) - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx$$

$$ = \frac{m^{1-s}}{s-1} + \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx$$

$$ \implies \zeta(s) = \sum_{k=1}^{m} k^{-s} + \frac{m^{1-s}}{s-1} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx $$

If $\text{Re}(s) >-3$, the remainder goes to zero as $m$ goes to $\infty$. This is due to the oscillatory nature of $B_{3}(x - \lfloor x \rfloor)$. But at the very least it goes to zero for $\text{Re} (s) > -2$.

So

$$ \lim_{m \to \infty} \zeta(s) = \zeta(s) = \lim_{m \to \infty} \Big( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \Big)$$Then assuming it is OK to differentiate inside of the limit,

$$\zeta'(s) = \lim_{m \to \infty} \Bigg(- \sum_{k=1}^{m} k^{-s} \log k - \frac{-m^{1-s} (1-s) \log m +m^{1-s}}{(1-s)^{2}} + \frac{m^{-s} \log m}{2} $$

$$ + \frac{1}{12} \left(m^{-s-1}- sm^{-s-1} \log m \right) \Bigg) $$

$$ \implies \zeta'(-1) = \lim_{m \to \infty} \Bigg( - \sum_{k=1}^{m} k \log k - \frac{-2m^{2} \log m + m^{2}}{4} + \frac{m \log m}{2} + \frac{1}{12} + \frac{ \log m}{12} \Bigg)$$

$$ = \lim_{m \to \infty} \Bigg( - \sum_{k=1}^{m} k \log k + \Big(\frac{m^{2}}{2} + \frac{m}{2} + \frac{1}{12} \Big) \log m -\frac{m^{2}}{4} + \frac{1}{12} \Bigg)$$

$$ = - \lim_{m \to \infty} \Bigg( \sum_{k=1}^{m} k \log k - \Big(\frac{m^{2}}{2}+\frac{m}{2} + \frac{1}{12} \Big) \log m + \frac{m^{2}}{4} \Bigg) + \frac{1}{12} = - \log A + \frac{1}{12}$$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top