The Euler Maclaurin summation formula and the Riemann zeta function

Click For Summary
SUMMARY

The Euler-Maclaurin summation formula provides a method for approximating sums using integrals, specifically stating that for a function \( f(x) \) with \( (2p+1) \) continuous derivatives on the interval \([m,n]\), the sum can be expressed as an integral plus correction terms involving Bernoulli numbers. This formula is applied to derive the Riemann zeta function \( \zeta(s) \) for \( \text{Re}(s) > -3 \), leading to the expression \( \zeta'(s) \) and its evaluation at \( s = -1 \), resulting in \( \zeta'(-1) = \frac{1}{12} - \log A \), where \( A \) is the Glaisher-Kinkelin constant. The discussion emphasizes the oscillatory nature of Bernoulli polynomials and their impact on convergence.

PREREQUISITES
  • Understanding of calculus, specifically integration and differentiation
  • Familiarity with Bernoulli numbers and polynomials
  • Knowledge of the Riemann zeta function and its properties
  • Experience with asymptotic analysis and limits in mathematical functions
NEXT STEPS
  • Study the derivation of the Euler-Maclaurin summation formula in detail
  • Explore the properties and applications of Bernoulli numbers and polynomials
  • Investigate the Riemann zeta function, particularly its analytic continuation and functional equation
  • Learn about the Glaisher-Kinkelin constant and its significance in number theory
USEFUL FOR

Mathematicians, theoretical physicists, and students studying advanced calculus or number theory, particularly those interested in series approximations and special functions.

polygamma
Messages
227
Reaction score
0
The Euler-Maclaurin summation formula and the Riemann zeta function

The Euler-Maclaurin summation formula states that if $f(x)$ has $(2p+1)$ continuous derivatives on the interval $[m,n]$ (where $m$ and $n$ are natural numbers), then

$$ \sum_{k=m}^{n-1} f(k) = \int_{m}^{n} f(x) \ dx - \frac{1}{2} \Big( f(n)-f(m) \Big) + \sum_{j=1}^{p} \frac{B_{2j}}{(2j)!} \Big( f^{(2j-1)}(n) - f^{(2j-1)} (m) \Big)$$

$$ + \frac{1}{(2p+1)!}\int_{m}^{n} B_{2p+1}(x-\lfloor x \rfloor ) f^{(2p+1)}(x) \ dx $$

where $B_{j}$ are the Bernoulli numbers and $B_{j}(x)$ are the Bernoulli polynomials.


You can derive the formula by first repeatedly integrating $ \displaystyle \int_{0}^{1} f(x) \ dx = \int_{0}^{1} B_{0}(x) f(x) \ dx$ by parts. Then replace $f(x)$ with $f(x+k)$ and sum both sides of equation from $m$ to $n-1$.By applying the Euler Macluarin summation formula to $ \displaystyle \sum_{k=n}^{\infty} {k^{-s}}$ show that for $\text{Re}(s) > -3$, $$ \zeta(s) = \lim_{n \to \infty} \left( \sum_{k=1}^{n} k^{-s} - \frac{n^{1-s}}{1-s} - \frac{n^{-s}}{2} + \frac{s n^{-s-1}}{12} \right) . $$Then use the representation to show that $ \displaystyle \zeta'(-1) = \frac{1}{12} - \log A$ where $A$ is the Glaisher-Kinkelin constant given by

$$A = \lim_{n \to \infty} \frac{\prod_{k=1}^{n} k^{k}}{n^{n^{2}+n/2+1/12} e^{-n^{2}/4}} . $$
 
Last edited:
Physics news on Phys.org
$$ \sum_{k=m}^{\infty} k^{-s} = \zeta(s) - \sum_{k=1}^{m-1} k^{-s} = \zeta(s) - \sum_{k=0}^{m} k^{-s} + m^{-s} $$

$$ = \int_{m}^{\infty} x^{-s} \ dx - \frac{1}{2} \Big( 0 - m^{-s} \Big) + \frac{1/6}{2!} \Big( 0 - sm^{-s-1} \Big) - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx$$

$$ = \frac{m^{1-s}}{s-1} + \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx$$

$$ \implies \zeta(s) = \sum_{k=1}^{m} k^{-s} + \frac{m^{1-s}}{s-1} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} - \frac{s(s+1)(s+2)}{3!}\int_{m}^{\infty} B_{3}(x-\lfloor x \rfloor ) x^{-s-3} \ dx $$

If $\text{Re}(s) >-3$, the remainder goes to zero as $m$ goes to $\infty$. This is due to the oscillatory nature of $B_{3}(x - \lfloor x \rfloor)$. But at the very least it goes to zero for $\text{Re} (s) > -2$.

So

$$ \lim_{m \to \infty} \zeta(s) = \zeta(s) = \lim_{m \to \infty} \Big( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \Big)$$Then assuming it is OK to differentiate inside of the limit,

$$\zeta'(s) = \lim_{m \to \infty} \Bigg(- \sum_{k=1}^{m} k^{-s} \log k - \frac{-m^{1-s} (1-s) \log m +m^{1-s}}{(1-s)^{2}} + \frac{m^{-s} \log m}{2} $$

$$ + \frac{1}{12} \left(m^{-s-1}- sm^{-s-1} \log m \right) \Bigg) $$

$$ \implies \zeta'(-1) = \lim_{m \to \infty} \Bigg( - \sum_{k=1}^{m} k \log k - \frac{-2m^{2} \log m + m^{2}}{4} + \frac{m \log m}{2} + \frac{1}{12} + \frac{ \log m}{12} \Bigg)$$

$$ = \lim_{m \to \infty} \Bigg( - \sum_{k=1}^{m} k \log k + \Big(\frac{m^{2}}{2} + \frac{m}{2} + \frac{1}{12} \Big) \log m -\frac{m^{2}}{4} + \frac{1}{12} \Bigg)$$

$$ = - \lim_{m \to \infty} \Bigg( \sum_{k=1}^{m} k \log k - \Big(\frac{m^{2}}{2}+\frac{m}{2} + \frac{1}{12} \Big) \log m + \frac{m^{2}}{4} \Bigg) + \frac{1}{12} = - \log A + \frac{1}{12}$$
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K