The Geometry of Non-Euclidean Complex Planes

maline
Messages
436
Reaction score
69
If the Parallel Axiom is just one of several possible assumptions, why is it that so many mathematical relationships seem to only be expressible in the Euclidean plane? Do planes with positive or negative curvature give analogues to the Agrand plane for complex algebra, or the Cartesian plane for, say, the representation of differentials as slopes and integrals as area?
 
Mathematics news on Phys.org
The complex plane actually has a lot of relations to hyperbolic and spherical geometry. The great book Visual Complex Analysis goes a bit into that.

Something you should know is that most spaces studied in mathematics locally are Euclidean. Even the hyperbolic and spherical spaces are locally Euclidean, which means that they locally satisfy the parallel axiom. Even the spaces studied in physics and general relativity are locally Euclidean. Curvature is something that really shows up more in global situations (it shows up locally too but it's very small, so everything is approximately Euclidean).

Doing integral and differential calculus on spaces with curvature is definitely possible and is studied in differential geometry. Trigonometry on such spaces is possible as well.
 
micromass said:
The complex plane actually has a lot of relations to hyperbolic and spherical geometry. The great book Visual Complex Analysis goes a bit into that.

Something you should know is that most spaces studied in mathematics locally are Euclidean. Even the hyperbolic and spherical spaces are locally Euclidean, which means that they locally satisfy the parallel axiom. Even the spaces studied in physics and general relativity are locally Euclidean. Curvature is something that really shows up more in global situations (it shows up locally too but it's very small, so everything is approximately Euclidean).

Doing integral and differential calculus on spaces with curvature is definitely possible and is studied in differential geometry. Trigonometry on such spaces is possible as well.

Thanks so much! Can you you give me a few more details? For instance, can multiplication of complex numbers be interpreted geometrically in a curved plain?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top