zyp
- 3
- 0
Is the integral of a strictly positive function on a set of positive measure strictly positive? Thankis a lot
Last edited:
quasar987 said:Yes. Suppose f:A-->R is such a function. We have that
A=\bigcup_{n\in\mathbb{N}}f^{-1}\left(\left[\frac{1}{n},+\infty\right)\right)
and so by subadditivity of the measure
\mbox{mes}(A)\leq \sum_n\mbox{mes}\left(f^{-1}\left(\left[\frac{1}{n},+\infty\right)\right)\right)
Since mes(A)>0, it must be that A_n:=mes(f^{-1}\left(\left[\frac{1}{n},+\infty\right)\right))>0 for some n. By definition
\int_Af=\sup_h\left{\int_Ah\right}
where h:A-->R denotes a positive measurable stair function bounded above by f.
It follows that
\int_A f\geq \int_{A_n}\frac{1}{n}=\frac{1}{n}\mbox{mes}A_n>0