Why Shift ##z_0## by ##-i\epsilon## in Non-Convergent Integrals?

  • Thread starter Thread starter Jufa
  • Start date Start date
  • Tags Tags
    Integral
Jufa
Messages
101
Reaction score
15
Homework Statement
I encounter a divergent integral when computing a commutator of two fields in quantum field theory homework
Relevant Equations
##\phi = \int \frac{dp^3}{(2\pi)^3}e^{-ipx}\hat{a}(\vec{p})##
I am asked to compute ##[\phi(x), \phi^\dagger(y)]## , with
##\phi = \int \frac{dp^3}{(2\pi)^3}e^{-ipx}\hat{a}(\vec{p})## and with z=x-y a spacelike vector. And show that this commutator does not vanish, which means that for this non-relativsitic field i.e. with ##p^0 = \frac{\vec{p}^2}{2m}## causality is violated.

After two straightforward steps I get to this

##[\phi(x), \phi^\dagger(y)] = \int \frac{dp^3}{(2\pi)^3}e^{-i \frac{\vec{p}^2}{2m}z_0}e^{i\vec{p}\cdot\vec{z}} ##

It is self-evident that this integral does not converge and, therefore, I have been suggested to shift ##z_0## by adding to it a quantity ##-i\epsilon##. This makes the integral convergent and allows one to take the limit ##\epsilon \rightarrow 0## in the end, which works perfectly.
But why are we allowed to do this? To me it seems that the integral I am asked to compute is just (I would end the problem here and say that it is not zero, just what I was demanded to prove) divergent and that this trick allows to compute not the requested integral but a different one.

I need some help on this.

Thanks in advance.
 
Physics news on Phys.org
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top