The Jacobi Iterative method question

Spectre Moncy
Messages
2
Reaction score
0

Homework Statement



(Ax = B)

A:

3.1410 -2.7180 1.4140 -1.7321
9.8690 2.7180 -7.3890 0.4280
2.2360 -2.4490 1.0000 -1.4140
31.0060 7.3890 -2.6450 0.1110

B:

3.316
0
3.141
1.414

The question in my Numerical Methods assignment asks to use the Jacobi Iterative method to solve the system.

Homework Equations



The Jacobi Iterative method works ONLY IF a matrix is diagonally dominant. It's not mentioned in my Numerical Analysis textbook. I have only found out about this on wiki.org.

I have found out that the matrix A (See above) is not diagonally dominant. So the method will not work on this system (Ax = B).

Did I miss something? What should I do? I tried the method very carefully. The solution set doesn't make sense.
 
Physics news on Phys.org
Jacobi method can converge even if the matrix is not diagonally dominant. However, you notice immediately from the iteration formula
x_i^{n+1} = \frac{b_i - \sum_{j \neq i} a_{ij} x^{n}_j}{a_{ii}}
that if the matrix is not diagonally dominant,
\frac{\sum_{j \neq i} a_{ij}}{a_{ii}} \gt 1
then the convergence depends on the initial value you choose for x. Perhaps you can make a better guess for the initial x, or if that fails, look up the correct value from wolfram alpha and adjust your guess accordingly. :-)
 
The initial x^(0) (provided by the assignment question paper) is x^(0) = (3, 0, 3, 1).

I tried this. It converged to some solution set but the problem is that this solution set is extremely inaccurate.

I have no problem finding the right solution set when applying Gaussian Elimination (with partial pivoting) and LU Decomposition method on this system (Ax = b).

I can't say the same for the Jacobi method :(
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top