Let ##m_0## represent the initial mass of steam in the tank
Let ##v_0## represent the initial specific volume of steam in the tank
Let ##u_0## represent the initial internal energy per unit mass of steam in the tank
Let ##\Delta m## represent the mass of steam added from the pipe to the tank (through the capillary)
Let ##u_f## represent the final internal energy per unit mass of steam in the tank (after ##\Delta m## has been added)
let ##v_f## represent the final specific volume of the steam in the tank (after ##\Delta m## has been added)
Let ##h_p## represent the enthalpy per unit mass of the steam in the pipe
Using the open system version of the first law, derive an equation for ##u_f## in terms of ##\Delta m##, ##h_p##, ##h_p##, ##u_0##, and ##m_0##. Derive an equation for ##v_f## in terms of ##m_0##, ##v_0##, and ##\Delta m##.
For ##\Delta m=0.5 kg##, what are the values of ##u_f## and ##v_f##?