5hassay
- 81
- 0
Homework Statement
Prove:
If \lim_{x \rightarrow a} f \left( x \right) = l, then, if \sqrt[n]{f \left( x \right)} exists, \lim_{x \rightarrow a} \sqrt[n]{f \left( x \right)} = \sqrt[n]{l}.
Homework Equations
Nothing really...
The Attempt at a Solution
Okay, so here goes my attempt...
Proof. We can assume that
\forall \varepsilon > 0, \exists \delta_1 > 0 : \forall x, 0 < \left| x - a \right| < \delta_1 \Longrightarrow \left| f \left( x \right) - l \right| < \varepsilon,
whereas, we want to show
\forall \varepsilon > 0, \exists \delta_2 > 0 : \forall x, 0 < \left| x - a \right| < \delta_2 \Longrightarrow \left| \sqrt[n]{f \left( x \right)} - \sqrt[n]{l} \right| < \varepsilon.
But, \varepsilon > \left| f \left( x \right) - l \right| \geq \left| \sqrt[n]{f \left( x \right)} - \sqrt[n]{l} \right|. Therefore, we conclude that given \varepsilon > 0, if, for all x, 0 < \left| x - a \right| < \delta for some such \delta, then we have both \left| f \left( x \right) - l \right| < \varepsilon and \left| \sqrt[n]{f \left( x \right)} - \sqrt[n]{l} \right| < \varepsilon.
QED
So, I guess the first remark would be if my method was even right, where the second would be if my inequality is true (I can't think of a counterexample).
Anyway, much appreciation for any help.