The math of physics - Calculus of Variation?

Mike2
Messages
1,312
Reaction score
0
We escape the problems of particle physics by exploring the higher dimensions of String theory. When we have questions about String theory, we jump to the higher dimensions of M-theory to answer them. And some have purposed to use the higher dimensions of F-theory to answer questions about M-theory.

Yet, we do have principles that apply no matter what dimensionality we go to. Path integrals, the action of the Lagrangians, Noether's theorem, various kinds of symmetry, the geodesics of General Relativity. All these principles are applicable at every level of dimensionality we explore, and they are all expressible in terms of the functional calculus of variation. Least action is where the functional derivative is zero. The path integral is a functional integral integrated over the variation of a function.

But functional calculus is not well understood yet. Integrating over function spaces that include the function and how it may vary is not well defined. It has yet to be developed whether even functional differentiation is the inverse of functional integration. I think more study needs to be given this subject.

I am attempting to develop physics from logic. Your insights are
appreciated.

More at:
http://www.sirus.com/users/mjake/StringTh.html
 
Last edited by a moderator:
Mathematics news on Phys.org
Do you mean YOU don't understand functional analysis? I believe it's a fairly well developed field.

Or perhaps you mean physicists don't understand functional analysis. That might well be true.
 
The Feynman path integral used in quantum mechanics is an integral over the function space of admissible functions. What is the inverse operation of this path integral? Is it the variation with respect to how a function may vary? References please.
 
I'm not real clear on what Feynman is accomplishing with a path integral. He integrates over every possible path. Is this the same as integrating over a volume through which the paths may travel? Each path is weighted by the exponent of the action integral. Is this an average characteristic of all paths? Or maybe this is another way of finding some topological invariant of the space of the paths. Any clues?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top